

Conceção e Projeto de uma Ponte Pedonal Sobre a Via de Cintura Interna

MARIA MAFALDA COSTA GOMES EUGÉNIO CARDOSO

Dissertação submetida para satisfação parcial dos requisitos do grau de

MESTRE EM ENGENHARIA CIVIL — ESPECIALIZAÇÃO EM ESTRUTURAS

Orientador: Professor Doutor Álvaro Ferreira Marques Azevedo

MESTRADO INTEGRADO EM ENGENHARIA CIVIL 2012/2013

DEPARTAMENTO DE ENGENHARIA CIVIL

Tel. +351-22-508 1901

Fax +351-22-508 1446

Editado por

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Rua Dr. Roberto Frias

4200-465 PORTO

Portugal

Tel. +351-22-508 1400

Fax +351-22-508 1440

http://www.fe.up.pt

Reproduções parciais deste documento serão autorizadas na condição que seja mencionado o Autor e feita referência a Mestrado Integrado em Engenharia Civil - 2012/2013 - Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2013.

As opiniões e informações incluídas neste documento representam unicamente o ponto de vista do respetivo Autor, não podendo o Editor aceitar qualquer responsabilidade legal ou outra em relação a erros ou omissões que possam existir.

Este documento foi produzido a partir de versão eletrónica fornecida pelo respetivo Autor.

Conceção e Projeto de uma Ponte Pedonal sobre a Via de Cintura Interna
Aos meus Pais
Apenas quem arrisca um grande fracasso consegue um grande sucesso
Robert F. Kennedy

_

AGRADECIMENTOS

É com grande satisfação que expresso aqui os meus agradecimentos a todos aqueles, que de uma forma direta ou indireta, fizeram com que fosse possível a conclusão desta última etapa, de um árduo percurso de cinco anos.

Ao meu orientador, Professor Álvaro Azevedo, não só pela disponibilidade, ajuda e partilha de conhecimentos, mas também pelo auxílio na realização do modelo de cálculo no programa *Femix*.

À secção de Vias de Comunicação do Departamento de Engenharia Civil pelo fornecimento da planta topográfica do local em estudo.

Ao Professor António Arêde pela ajuda e disponibilidade relativamente aos ensaios realizados no laboratório.

Ao Professor Miguel Castro pela disponibilidade e esclarecimento de diversas dúvidas relativas a este trabalho.

Ao Professor José Luís Esteves pela disponibilidade e esclarecimento de dúvidas relativas aos adesivos estruturais.

À Professora Bárbara Rangel pela disponibilidade e pelo trabalho na realização de desenhos da ponte em estudo.

Ao Professor Bruno Almeida, Diretor do Gabinete de Apoio ao Desporto da Universidade do Porto, pelo tempo disponibilizado para questões relativas à viabilidade desta obra no local onde se insere.

A todos os meus amigos e ao meu namorado, que de alguma forma contribuíram para que a realização deste trabalho fosse possível.

Aos meus colegas e amigos, que acompanharam mais de perto a realização deste trabalho, e que ajudaram através da partilha de ideias e opiniões.

Aos meus pais que sempre acreditaram em mim e me incentivaram, tornando todo este percurso possível.

Finalmente um agradecimento especial ao meu pai, Engenheiro Mário Cardoso, não só pela grande admiração que sinto por ele, que me levou à escolha deste curso, como também por todo o conhecimento partilhado comigo.

RESUMO

O presente projeto baseia-se na conceção de uma solução base para uma ponte pedonal sobre a Via de Cintura Interna no Porto (Portugal), que estabelece uma ligação entre o Estádio Universitário e o Jardim Botânico.

O objetivo do projeto apresentado consiste na concretização de uma solução não convencional, consequente de uma estrutura com uma geometria complexa, nomeadamente um perfil longitudinal constituído por concordâncias circulares.

A solução estudada baseia-se numa ponte atirantada cujo tabuleiro é constituído por duas chapas de aço separadas por tubos circulares estruturais, colados entre si através de um adesivo estrutural - resina epóxido. Os tubos são dobrados com raios específicos, definindo assim o perfil longitudinal da ponte.

A definição das secções dos elementos estruturais foi realizada através de tentativas até se alcançarem as soluções apresentadas neste trabalho.

O estudo dos elementos desta estrutura é realizado a partir de modelos de cálculo submetidos a uma análise estática. Sempre que possível são utilizados como base os regulamentos europeus e nacionais, nomeadamente o Eurocódigo 1 e Eurocódigo 3. Quando necessário são consultadas as normas do Regulamento de Segurança e Ações para Estruturas de Edifícios e Pontes.

A existência de elementos de cabo na estrutura implica a realização de análises não lineares executadas por um programa de cálculo automático.

A ausência de casos de estruturas compostas por tubos colados com resina epóxido encaminhou este trabalho no sentido de averiguar a viabilidade desta solução, com o auxílio de um ensaio em laboratório e a realização de um modelo de micromecânica.

Palavras-Chave: ponte pedonal, ponte atirantada, estruturas de cabos, análise não linear, adesivos estruturais.

ABSTRACT

This project consists on the design of a solution for a pedestrian bridge over the Via de Cintura Interna in Porto (Portugal) that provides a connection between the Estádio Universitário and the Jardim Botânico.

The main objective of the presented project is to implement an unconventional solution, resulting in a structure with a complex geometry, namely a longitudinal profile consisted of circular concordances.

The studied solution comprises a cable-stayed bridge in which the deck is formed by two steel plates separated by structural circular tubes glued together with a structural adhesive – epoxy resin. The tubes are folded with a specific radius, thus defining the longitudinal profile of the bridge.

The definition of the sections of the structural elements was carried out through trial, until obtaining the solutions presented here.

The study of the different elements of this structure is based on calculation models submitted to a static analysis. European and national regulations are used whenever possible, such as Eurocode 1 and Eurocode 3. When necessary the Portuguese code "Regulamento de Segurança e Ações para Estruturas de Edificios e Pontes" is also consulted.

The existence of cable elements in the structure implies a series of nonlinear analyses performed by a computer program.

Due to the lack of knowledge of real cases where epoxy resin is used to glue some elements of the structure, this work required the investigation of the viability of this specific solution. This led to the realization of an experimental test and to the development of a micromechanics analytical model.

KEYWORDS: footbridge, cable-stayed bridge, cable structures, nonlinear analysis, structural adhesives.

ÍNDICE GERAL

AGRADECIMENTOS	
RESUMO	
ABSTRACT	V
1. INTRODUÇÃO	1
- 1.1. Âмвіто do projeto	
1.2. ESTRUTURAS INOVADORAS	4
2. DESCRIÇÃO GERAL DO PROJETO	9
2.1. LOCALIZAÇÃO DA OBRA	9
2.2. CARACTERÍSTICAS CONDICIONANTES	11
2.3. DEFINIÇÃO DA GEOMETRIA DA ESTRUTURA	12
2.3.1. DIMENSÕES GERAIS DA ESTRUTURA	12
2.3.2. DIMENSÕES PRINCIPAIS DA SECÇÃO TRANSVERSAL DO TABULEIRO	16
2.3.3. ESQUEMA GERAL DA PONTE	18
3. MATERIAIS	21
3.1. DESCRIÇÃO GERAL	21
3.2. Adesivos Estruturais	21
3.3. Aço	23
4. ANÁLISE E DIMENSIONAMENTO DA ESTRUTURA	27
4.1. Ensaio em Laboratório	27
4.1.1. OBJETIVO DO ENSAIO	27
4.1.2. DESCRIÇÃO DO ENSAIO	27
4.1.3. Modelo de barras	31
4.1.4. ANÁLISE E DISCUSSÃO DOS RESULTADOS	35
4.2. Modelação da estrutura	37
4.2.1. MODELAÇÃO DO TABULEIRO	
4.2.2. MODELAÇÃO DOS CABOS E MASTROS	43
4.3. ANÁLISE ESTÁTICA DA ESTRUTURA	47

4.3.1. Solicitações	47
4.3.2. COMBINAÇÃO DE AÇÕES	57
4.3.3. ESTADO LIMITE DE SERVIÇO (ELS)	58
4.3.4. ESTADO LIMITE ÚLTIMO	63
4.3.5. RESUMO DOS RESULTADOS OBTIDOS	69
4.4. Modos de vibração	71
4.5. VERIFICAÇÃO DA CAPACIDADE RESISTENTE DOS ELEMENTOS ESTRUTURAIS	73
4.5.1. TABULEIRO	73
4.5.2. CABOS	84
4.5.3. Mastros	86
5. MODELO DE ANÁLISE MICROMECÂNICA	87
5.1. INTRODUÇÃO E OBJETIVOS	87
5.2. Descrição do modelo	87
5.2.1. DEFINIÇÃO GEOMÉTRICA	87
5.2.2. Apoios considerados	90
5.2.3. Cargas aplicadas	91
5.3. Análise e discussão dos resultados	92
5.3.1. Análise dos deslocamentos	92
5.3.2. Análise de tensões	93
6. PROCESSO CONSTRUTIVO	97
7 ESTIMATIVA ODCAMENTAL	
7. ESTIMATIVA ORÇAMENTAL	103
8. CONCLUSÕES E DESENVOLVIMENTOS FUTUROS	105
BIBLIOGRAFIA	107
ANEXOS	109

ÍNDICE DE FIGURAS

Figura 1 – Pólos da Universidade de Porto.[2]	1
Figura 2 – Caminho pedestre atual de acesso ao EU.	2
Figura 3 – Caminho pedestre de acesso ao EU após a construção de uma ponte pedonal e cami atual	
Figura 4 – Ponte <i>Infinity,</i> Inglaterra. [3]	4
Figura 5 – Ponte <i>Infinity</i> , com a sua forma refletida no rio, Inglaterra. [4]	5
Figura 6 – Ponte pedonal <i>La Rosa</i> , Espanha. [5]	5
Figura 7 - Ponde pedonal de Pullau Langkawi (Langkawi <i>Sky bridge</i>), Malásia. [7]	6
Figura 8 - Ponte Pedonal <i>Melkwegbrug (Milky Way Bridge</i>), vista superior, Holanda. [8]	7
Figura 9 - Ponte Pedonal <i>Melkwegbrug (Milky Way Bridge</i>), Holanda. [9]	7
Figura 10 - Ponte pedonal Sporenburg (Python Bridge), Holanda. [10]	8
Figura 11 – Opções de localização da ponte pedonal em estudo	9
Figura 12 – Acesso a partir da Travessa Entrecampos	10
Figura 13 – Acesso a partir do interior do Jardim Botânico	10
Figura 14 – Esquema da largura do tabuleiro. [11]	11
Figura 15 – Cotas do terreno de implantação	12
Figura 16 – Esquema da definição geométrica do perfil longitudinal	12
Figura 17 – Esquema da ponte em planta	14
Figura 18 – Esquema de um mastro com os respetivos cabos	14
Figura 19 – Dimensões máximas da secção dos mastros (dimensões em metros)	15
Figura 20 – Esquema da zona central de amarração dos cabos (dimensões em metros)	15
Figura 21 – Esquema dos perfis tubulares quadrados na zona inferior do tabuleiro	16
Figura 22 – Esquema das zonas onde a secção possui tubos com espessura de parede de 5 mm	17
Figura 23 – Secção transversal do tabuleiro	17
Figura 24 – Modelo em três dimensões da ponte (vista no sentido Norte-Sul)	18
Figura 25 – Esquiço da ponte no sentido Sul-Norte.	19
Figura 26 – Esquiço da ponte no sentido Norte-Sul.	19
Figura 27 – Acesso a partir do Estádio Universitário	20
Figura 28 – Acesso a partir do Jardim Botânico.	20
Figura 29 – Estrutura molecular reticulada das resinas termoendurecíveis. [12]	22
Figura 30 – Valores nominais da tensão de cedência f _y e da tensão última à tração f _u para a laminados a quente. [16]	-

igura 31 – Dimensões e eixos considerados no provete submetido a ensaio	28
igura 32 – Fotografia do provete antes de ser submetido ao ensaio	29
igura 33 – Fotografia da barra metálica soldada à extremidade do provete	29
igura 34 – Esquema estrutural do provete ensaiado	30
igura 35 – Fotografia da zona responsável pela aplicação da carga	30
igura 36 – Fotografia da célula de carga	31
igura 37 – Fotografia do defletómetro.	31
igura 38 – Modelo de barras, no Robot, do provete submetido ao ensaio	32
igura 39 – Fotografia da zona de encastramento do provete	32
igura 40 – Esquema representativo da zona de encastramento do provete (dimensões em meti	
igura 41 – Esquema geral do provete submetido ao ensaio e esquema estrutural (dimensões netros)	
igura 42 – Apoios do modelo de barras 3D no <i>Robot</i>	35
igura 43 – Gráfico com os valores de força e deslocamento resultantes do ensaio	35
igura 44 - Gráfico com os valores de força e deslocamento resultantes do ensaio e do mod	
igura 45 – Secções das três longarinas consideradas no modelo (espessura da parede do tubo onm)	
igura 46 – Imagem representativa dos valores de $V_y,V_{py},V_zeV_{pz},$ no programa	38
igura 47 – Secção simplificada das longarinas 1 e 3 com espessura de parede de 3 mm	39
igura 48 – Secção com apenas dois tubos quadrados de parede delgada	39
igura 49 - Secção considerada para o cálculo do momento de inércia à torção das longarinas 1 om 3 e 5 mm de espessura de tubos.	
igura 50 - Secção considerada para o cálculo do momento de inércia à torção da longarina 2, co 5 mm de espessura de tubos.	
igura 51 - Modelo de barras do centro do tabuleiro.	42
igura 52 – Modelo de barras da zona de amarração dos cabos	43
igura 53 – Modelo de barras tridimensionais do tabuleiro	43
igura 54 – Modelo de um mastro	46
igura 55 – Definições dos apoios no programa <i>Robot</i>	46
igura 56 - Modelo global da estrutura com tabuleiro, mastros e cabos	47
igura 57 - Gráfico que relaciona cfx , 0 com a razão b/d $_{ m tot}$. [19]	52
igura 58 – Correlação entre a temperatura mínima do ar à sombra (T _{min} /T _{max}) e a componente ariação uniforme de temperatura mínima/máxima em pontes (T _{a min} /T _{a may}).[21]	

Figura 59 – Deformação para a combinação 2 (ELS3).	59
Figura 60 - Deformação para a combinação 3 (ELS4)	59
Figura 61 - Deformação para a combinação 4 (ELS8)	60
Figura 62 - Deformação para a combinação 5 (ELS11)	60
Figura 63 - Deformação para a combinação 6 (ELS18)	61
Figura 64 - Deformação para a combinação 7 (ELS35)	61
Figura 65 - Deformação para a combinação 8 (ELS37)	62
Figura 66 - Deformação para a combinação 9 (ELS38).	62
Figura 67 - Deformação para a combinação 10 (ELS41)	62
Figura 68 – Gráfico de barras com o esforço axial de cada cabo para a combinação 11	63
Figura 69 – Diagrama de esforços axiais nas longarinas para a combinação 12	64
Figura 70 - Gráfico de barras com o esforço axial de cada cabo para a combinação 13	64
Figura 71 - Gráfico de barras com o esforço axial de cada cabo para a combinação 14	65
Figura 72 – Diagramas de momentos nas longarinas para a combinação 15	65
Figura 73 - Gráfico de barras com o esforço axial de cada cabo para a combinação 16	66
Figura 74 - Diagramas de momentos nas longarinas para a combinação 17	66
Figura 75 – Diagramas de esforço transverso nas longarinas para a combinação 18	67
Figura 76 - Gráfico de barras com o esforço axial de cada cabo para a combinação 19	67
Figura 77 - Gráfico de barras com o esforço axial de cada cabo para a combinação 20	68
Figura 78 – Mapa de tensões máximas para a combinação 20.	68
Figura 79 - Gráfico de barras com o esforço axial de cada cabo para as combinações mais (ELU).	
Figura 80 – Deformada do 3º modo de vibração.	73
Figura 81 – Diagrama de tensões normais correspondente à plastificação completa	74
Figura 82 – Casos considerados na determinação da resistência da secção (longarina 1)	75
Figura 83 – Ábaco de interação entre os valores de $\mathit{MRd}, \mathit{pl}$ e NRd para as secções da longarina	a 2. 78
Figura 84 – Ábaco de interação entre os valores de <i>MRd, pl</i> e <i>NRd</i> para as secções da longari pontos representativos dos esforços atuantes	
Figura 85 – Comprimento de encurvadura.	80
Figura 86 – Seleção da curva de encurvadura. [16]	82
Figura 87 – Tabela dos fatores de imperfeição para as curvas de encurvadura.[16]	82
Figura 88 – Verificação ao ELU dos perfis utilizados para a amarração dos cabos atrav programa de cálculo <i>Robot</i>	
Figura 89 – Verificação ao ELU da chapa central sob o tabuleiro através do programa de o	cálculo 84

igura 90 – Características dos cabos <i>Redaelil</i> do tipo FLC	35
igura 91 – Verificação dos mastros ao ELU através do programa de cálculo <i>Robot.</i>	36
igura 92 – Secção do modelo e referencial considerado	38
igura 93 – Esquema da do modelo no plano definido por x_3 e x_2	39
igura 94 – Visualização tridimensional do modelo de cálculo	90
igura 95 –Visualização tridimensional do modelo de cálculo e plano onde se intersetam os nós co poios9	
igura 96 – Visualização tridimensional do modelo de cálculo e planos onde se intersetam os nó om apoios	
igura 97 – Visualização tridimensional do modelo de cálculo e zona de aplicação da carga9	<u>)</u> 2
igura 98 – Deformada do modelo de elementos finitos sólidos.	<u>)</u> 2
igura 99 – Mapa de tensões $\sigma 1$ nos elementos de aço (escala em MPa)) 4
igura 100 - Mapa de tensões tangenciais $ au 31$ nos elementos de cola (escala em MPa) $ ext{S}$	3 5
igura 101 – Localização dos marcos metálicos que definem o perfil longitudinal da ponte	97
gura 102 – Pares de marcos metálicos	98
igura 103 – Colagem da primeira camada de tubos	98
igura 104 – Esquema pormenorizado da primeira camada de tubos	99
igura 105 – Esquema da zona de acesso à ponte apoiada sobre um cimbre	99
igura 106 – Esquema da zona central do tabuleiro apoiada sobre um cimbre10)0
igura 107 – Esquema de todo o tabuleiro apoiado sobre cimbres10	00
igura 108 – Esquema das cinco camadas de tubos sobre o cimbre)1
igura 109 – Esquema resumo da relação entre modelos10)6

ÍNDICE DE TABELAS

abela 1 – Raios das concordâncias e declives dos traineis.	13
abela 2 – Definição das secções das três longarinas	38
abela 3 – Valores dos momentos de inércia à torção das três longarinas	40
abela 4 – Valor do pré-esforço instalado nos cabos	45
abela 5 - Categorias e parâmetros do terreno. [19]	49
abela 6- Valores de d _{tot} a considerar através do EC1. [19]	52
abela 7 – Coeficientes de força para fios e cabos de comprimentos infinito. [20]	54
abela 8 - Valores recomendados da componente linear da variação diferencial de temperatura paliferentes tipos de tabuleiro de pontes rodoviárias, pedonais e ferroviárias. [21]	
abela 9 - Valores recomendados de k _{sur} a considerar para diferentes espessuras do revestimento superfície.[21]	
abela 10 – Valores máximos de esforço axial nos cabos (ELU).	70
abela 11 – Deslocamentos a meio vão para cada combinação no ELS	71
abela 12 – Modos de vibração da ponte	72
abela 13 – Momento resistente e esforço axial de tração resistente para os dois tipos de secções três longarinas.	
abela 14 – Principais momentos fletores e esforços axiais atuantes	78
abela 15 – Valores do esforço transverso plástico resistente e áreas de corte	80
abela 16 – Características dos cabos escolhidos.	86
abela 17 – Comparação de resultados entre o modelo <i>Femix</i> e <i>Robot</i>	93
abela 18 – Valores das tensões resistentes na cola e respetivos esforços atuantes	96
abela 19 – Estimativa orçamental da obra1	03

SÍMBOLOS E **A**BREVIATURAS

 A_x – Área da secção

11 _x / Wood and Google G
A_{ref} – Área de referência
A_c – Área da secção comprimida
A_t – Área da secção tracionada
$A_{ u}$ – Área de corte
b – Largura do tabuleiro
C – Coeficiente de força do vento
c_{dir} – Coeficiente de direção
c_e – Coeficiente de expansão
c_o – Coeficiente de orografia
c_r – Coeficiente de rugosidade
c_{season} – Coeficiente de sazão
d – Distância ou altura do tabuleiro ou diâmetro
d_c – Distância do centro de gravidade da secção comprimida ao eixo neutro plástico
d_t – Distância do centro de gravidade da secção tracionada ao eixo neutro plástico
d_{tot} – Altura equivalente do tabuleiro
e – Espessura
E – Modulo de Young
E_a – Modulo de <i>Young</i> do alumínio
E_r – Modulo de <i>Young</i> da cola
F – Força
f_u – Tensão de cedência última

 $F_{u,k}$ – Capacidade última resistente do cabo

 f_{ν} – Tensão de cedência

 F_w – Força do vento

 G_k – Valor característico de uma ação permanente

I – Momento de inércia de uma secção

 I_{v} – Intensidade de turbulência

K - Rigidez

 k_l – Coeficiente de turbulência

 k_r – Coeficiente de terreno

k_{sur} – Coeficiente de superfície

L – Comprimento

l - Comprimento de um lado

 L_e – Comprimento de encurvadura

M – Momento fletor

M_{Ed} – Valor de cálculo do momento fletor atuante

 M_{pl} – Momento fletor plástico

M_{Rd,pl} - Momento plástico resistente

N – Esforço axial

 N_{Ed} – Valor de cálculo do esforço axial atuante

 N_{cr} – Valor da carga crítica

N_{Rd} – Esforço axial resistente

P - Carga aplicada ou valor representativo de uma ação de pré-esforço

 q_{fk} – Valor característico da sobrecarga uniformemente distribuída

 q_p – Pressão dinâmica de pico

 T_{max} – Temperatura máxima do ar

 T_{min} – Temperatura mínima do ar

 $T_{e,max}$ – Temperatura máxima uniforme da ponte

 $T_{e,min}$ – Temperatura mínima uniforme da ponte

 v_b – Valor de referência da velocidade do vento

 $v_{b,0}$ – Valor básico da velocidade de referência do vento

 v_m – Velocidade média do vento

 $V_{Rd,pl}$ – Resistência plástica ao esforço transverso

w - Pressão dinâmica do vento

x, y, z - Coordenadas

 z_{max} – Altura máxima

 z_{min} – Altura mínima

 z_0 – Comprimento de rugosidade

 $z_{0,II}$ – Comprimento de rugosidade para um terreno de categoria II segundo o EC1

α – fator de imperfeição

△ – Deslocamento a meio vão

∆L – Variação de comprimento

 ΔT_{cool} – Variação diferencial de temperatura negativa

 ΔT_{heat} – Variação diferencial de temperatura positiva

 $\Delta T_{M,heat}$ – Variação diferencial de temperatura positiva para uma superfície de 50 mm

 $\Delta T_{M,cool}$ – Variação diferencial de temperatura negativa para uma superfície de 50 mm

 $\Delta T_{N,con}$ – Variação uniforme de temperatura de contração

 $\Delta T_{N.exp}$ – Variação diferencial de temperatura de expansão

ρ – Massa volúmica do ar

- δ Deslocamento
- δ_f Coeficiente de força para fios e cabos
- θ Rotação
- Y_{M} Coeficiente parcial de segurança
- ψ Valor reduzido de uma ação
- φ Imperfeição geométrica equivalente de uma estrutura
- u Coeficiente de Poisson
- Ω Área definida pela linha média do contorno de uma secção fechada de parede delgada
- $\bar{\lambda}$ Coeficiente de esbelteza adimensional
- χ Fator de redução para o modo de encurvadura
- σ_{rc} Tensão limite de elasticidade à compressão da resina epóxido
- σ_{rv} Tensão limite de elasticidade ao corte da resina epóxido
- σ_{rt} Tensão limite de elasticidade à tração da resina epóxido
- $\sigma_{u,k}$ Tensão ultima de resistência do cabo
- EC0 Eurocódigo 0
- EC1 Eurocódigo 1
- EC3 Eurocódigo 3
- ELS Estado limite de serviço
- ELU Estado limite último
- EU Estádio Universitário
- FLC Full locked Coil Strands
- UP Universidade do Porto

1 INTRODUÇÃO

1.1. ÂMBITO DO PROJETO

A Universidade do Porto é criada após a implantação da república, em termos formais, no dia 22 de Março de 1911. As primeiras faculdades que surgiram no Porto foram a Faculdade de Ciências e Medicina. Posteriormente, nasceram mais seis faculdades, nomeadamente, em 1915, a Faculdade Técnica (rebatizada em 1926 de Faculdade de Engenharia).

Posteriormente, a Universidade do Porto entrou em expansão. Como consequência, nos dias de hoje a UP¹ abrange um total de catorze faculdades. Esta expansão levou à necessidade de procura de mais zonas universitárias, visto que durante os primeiros anos as instalações da UP limitavam-se ao centro histórico da cidade. [1]

Assim, a multiplicação dos equipamentos universitários expandiu-se para a zona da Asprela e Campo Alegre, atualmente denominadas como Pólos II e III, respetivamente. O Pólo I representa a zona situada no centro histórico da cidade (Figura 1).

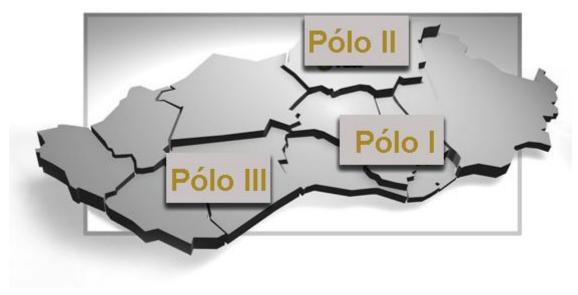


Figura 1 – Pólos da Universidade de Porto.[2]

_

¹ Universidade do Porto

A localização deste projeto encontra-se no Pólo III, ou seja, na zona do Campo Alegre.

Nesta zona foi construído o Estádio Universitário Prof. Dr. Jayme Rios Souza, inaugurado em 1953, onde posteriormente foi construído o Pavilhão Prof. Dr. Galvão Telles. Este complexo desportivo é gerido até aos dias de hoje pelo Centro Desportivo da Universidade do Porto, e encontra-se próximo do Jardim Botânico do Porto, mais especificamente, separados pela Via de Cintura Interna.

O Jardim Botânico do Porto é um espaço pertencente à Faculdade de Ciências, oferecendo à cidade um espaço rico em espécies botânicas.

Com a construção da Via de Cintura Interna, o acesso ao EU² tornou-se muito inconveniente, principalmente para os pedestres. Na Figura 2, pode-se verificar que quem se encontra na Rua do Campo Alegre necessita de percorrer o caminho assinalado a vermelho para aceder ao EU.

Figura 2 - Caminho pedestre atual de acesso ao EU.

A construção de uma ponte pedonal vem reduzir significativamente este inconveniente. O acesso ao EU a partir do Jardim Botânico (percurso assinalado a verde na Figura 3) leva a um encurtamento de aproximadamente 50% em relação ao percurso apresentado inicialmente.

.

² Estádio Universitário

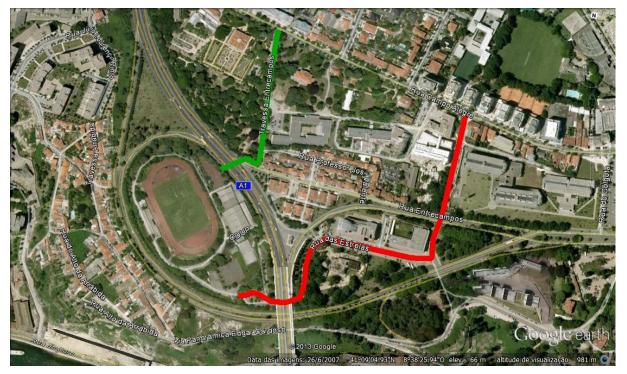


Figura 3 – Caminho pedestre de acesso ao EU após a construção de uma ponte pedonal e caminho atual.

Segundo o Prof. Bruno Almeida, Diretor do Gabinete de Apoio ao Desporto da Universidade do Porto, existe a intenção de uma recuperação e amplificação das instalações do EU. Apesar do projeto de uma ponte pedonal não estar prevista, esta construção revela-se muito viável, pelos motivos expostos anteriormente.

Na realidade, o EU encontra-se com um nível de degradação elevado devido aos anos de intensa utilização. Assim, pretende-se converter o EU do Porto numa infra-estrutura capaz de atrair um maior número de utentes e revelar-se adaptável a grandes eventos no âmbito desportivo.

Assim, o presente trabalho consiste na apresentação e investigação de uma solução para uma ponte pedonal na zona atrás indicada.

No Capítulo 2 é realizada uma descrição geral do projeto, onde é apresentada a localização da obra e as principais características geométricas que definem a estrutura.

O Capítulo 3 apresenta uma breve referência aos materiais utilizados – aço e adesivos estruturais.

O capítulo mais extenso deste trabalho é o Capítulo 4. É neste que se realiza, não só a modelação da ponte num programa de cálculo automático, como também uma análise estática e a verificação da segurança da estrutura. Mais especificamente, esta secção começa com a apresentação de um ensaio em laboratório, que apresenta conclusões condicionantes na realização do modelo de cálculo. Através dos esforços resultantes do modelo, são calculadas as capacidades resistentes da estrutura, e verificada a segurança dos diferentes elementos estruturais.

No Capítulo 5 é descrito um modelo de micromecânica de uma fatia de secção do tabuleiro da ponte. O objetivo é fornecer confiança relativamente às conclusões retiradas anteriormente, e calcular as tensões atuantes nos adesivos estruturais, de forma a verificar a sua segurança.

No Capítulo 6, é apresentada uma opção para o processo construtivo da ponte. Esta solução é descrita de forma simplificada, através de esquemas explicativos.

O sétimo Capítulo é referente aos custos da obra. É apresentada uma estimativa orçamental, muito simplificada, e baseada em custos apresentados em estudos existentes.

Por fim, o Capítulo 8 apresenta um resumo das conclusões obtidas ao longo deste trabalho, e propostas de desenvolvimentos futuros.

1.2. ESTRUTURAS INOVADORAS

Nos últimos anos, as pontes pedonais têm vindo a deixar de ser apenas um meio de acesso, passando a ser um marco, tanto nas zonas urbanas como nas não-urbanas. A sua geometria é cada vez mais peculiar e fora das linhas simplistas, utilizadas ao longo dos anos.

Esta tendência neste tipo de construções é atualmente propiciada pelas cargas pouco elevadas a que estão sujeitas, comparando com as pontes rodoviárias e ferroviárias.

Na realidade, quanto mais irreverente for a forma de uma ponte, maior é a complexidade em torná-la exequível.

A geometria da ponte em estudo teve como inspiração algumas formas e traçados das obras que são apresentadas em seguida.

Ponte Infinity (Infinity Bridge)

A ponte *Infinity*, representada na Figura 4 e Figura 5, é uma ponte pedonal localizada em Inglaterra que atravessa o Rio Tees, em Stockton-on-Tees. A ponte demorou 18 meses a ser construída (desde Junho de 2007 até Dezembro de 2008).

Esta estrutura vence uma distância de 272 m e é constituída por dois arcos em aço, que suspendem o tabuleiro em betão pré-fabricado através de cabos.

O nome desta obra de arte provém da conjugação da forma da ponte com a sua imagem refletida no rio – o símbolo de infinito (Figura 5).

Figura 4 – Ponte Infinity, Inglaterra. [3]

Figura 5 - Ponte Infinity, com a sua forma refletida no rio, Inglaterra. [4]

Ponte pedonal La Rosa

A ponte pedonal *La Rosa* (Figura 6) localiza-se na Corunha (Espanha), mais especificamente sobre a avenida San Cristóbal. Esta estrutura metálica possui uma forma oval e encontra-se suspensa por dois mastros através de 44 cabos de aço.

Figura 6 - Ponte pedonal La Rosa, Espanha. [5]

Ponde pedonal de Pullau Langkawi (Langkawi Sky bridge)

A ponte pedonal de Pullau Langkawi (Figura 7) localiza-se no arquipélago de Langkawi (Malásia), mais especificamente na ilha de Paullau Langkawi. Insere-se num meio não urbano, proporcionando uma maior mobilidade no acesso à zona e, ao mesmo tempo, valoriza a paisagem que a envolve. [6]

Figura 7 - Ponde pedonal de Pullau Langkawi (Langkawi Sky bridge), Malásia. [7]

O tabuleiro da ponte tem um comprimento de 125 m e encontra-se suspensa a 700 m acima do nível do mar, através de cabos suportados por apenas um mastro.

Ponte Pedonal Melkwegbrug (Milky Way Bridge)

A ponte pedonal *Melkwegbrug*, representada na Figura 8 e na Figura 9, localiza-se em Purmerend, uma pequena cidade da Holanda. Como se pode verificar na Figura 8, esta ponte separa os pedestres dos ciclistas e utilizadores de cadeira de rodas. Assim, os pedestres atravessam a ponte através do arco, enquanto que os ciclistas e utilizadores de cadeira de rodas utilizam uma passagem plana que se encontra por baixo do arco.

Figura 8 - Ponte Pedonal Melkwegbrug (Milky Way Bridge), vista superior, Holanda. [8]



Figura 9 - Ponte Pedonal Melkwegbrug (Milky Way Bridge), Holanda. [9]

O arco possui uma altura de 12 m acima do nível da água e a passagem para ciclistas um comprimento total de 100 m.

Ponte pedonal Sporenburg (Python Bridge)

A ponte pedonal Sporenburg, representada na Figura 10, localiza-se em Amesterdão na Holanda e a sua construção foi concluída no ano 2000.

A sua forma peculiar, com um comprimento total de 93 m, é concebida através de perfis de aço em T treliçados.

Figura 10 - Ponte pedonal Sporenburg (Python Bridge), Holanda. [10]

2 DESCRIÇÃO GERAL DO PROJETO

2.1. LOCALIZAÇÃO DA OBRA

Como já referido, a obra localiza-se no Porto, sobre a Via de Cintura Interna, e serve de ligação do Jardim Botânico ao Estado Universitário. O acesso a partir da zona do Jardim Botânico necessita de uma maior atenção, visto que se trata de um espaço natural e com caminhos interiores já definidos. Assim, como se pode verificar na Figura 11, são consideradas duas opções.

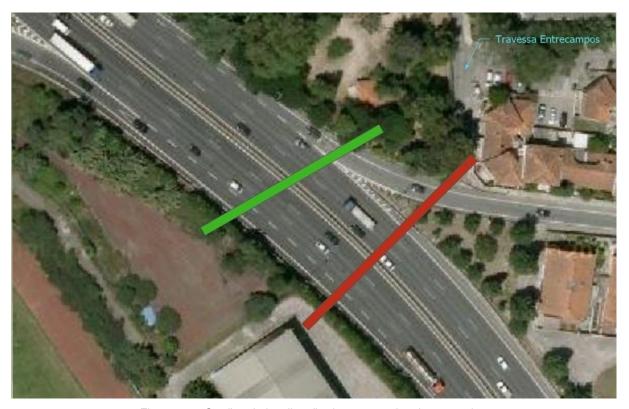


Figura 11 – Opções de localização da ponte pedonal em estudo.

A opção a vermelho tem em vista o aproveitamento da rua paralela ao Jardim Botânico (Travessa Entrecampos) para o acesso à ponte (Figura 12). Enquanto que a opção a verde, escolhida para a localização desta obra, utiliza o caminho existente no interior do jardim (Figura 13). A principal razão desta escolha é o facto de este último local implicar uma ponte de menor comprimento em relação ao

anterior. O fator estético também tem um papel importante pois, tratando-se de um acesso pedestre, um caminho pelo interior do jardim tem todas as vantagens, relativamente a um caminho partilhado com viaturas.

Figura 12 – Acesso a partir da Travessa Entrecampos.

Figura 13 – Acesso a partir do interior do Jardim Botânico.

Como se pode verificar na Figura 12, existe uma porta que permite o acesso ao jardim, para os pedestres que chegam da Travessa Entrecampos.

2.2. CARACTERÍSTICAS CONDICIONANTES

Pela sua ligeireza, as pontes pedonais permitem uma maior liberdade em relação à sua geometria e constituição, em comparação com pontes rodoviárias e ferroviárias. Isto é, os materiais de construção utilizados podem ser mais diversificados, assim como as formas geométricas mais acentuadas.

Contudo, deve-se ter em conta certas regras de boa prática na definição destas estruturas.

Em relação à largura do tabuleiro é recomendável que uma ponte pedonal possua uma largura entre 2.50 m e 3.00 m se apenas ceder acesso a pedestres. Deve-se passar para larguras acima de 3.50 m, se a obra possuir uma ciclovia, Figura 14.[11]

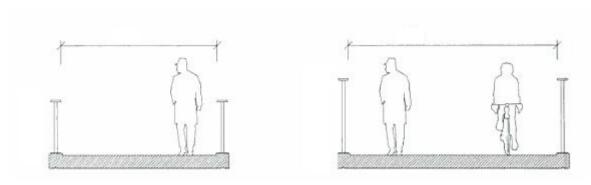


Figura 14 – Esquema da largura do tabuleiro. [11]

No caso em estudo apenas se pretende ceder passagem a pedestres, logo a largura escolhida é de 2.50 m.

Relativamente ao *gabarit* mínimo que se deve admitir, segundo o Art. 57.º do Regulamento Geral de Estradas e Caminhos Municipais, as obras de arte devem ser construídas a uma altura superior a 5 m, a partir do nível do pavimento da estrada.

Quanto aos guarda-corpos, considera-se uma altura de aproximadamente 1.10 m, de forma a garantir conforto e segurança aos pedestres quando utilizam este acesso.

É necessário referir que o acesso à ponte se processa a partir de escadas em ambas as margens. No entanto, esta solução não cumpre as normas de acessibilidade. Uma forma de contornar este problema seria a construção de rampas de acesso, mas devido às inclinações impostas nas normas, as rampas seriam muito extensas.

Assim, opta-se pela colocação de um elevador de escadas, solução que permite o acesso a utilizadores com condicionamentos de mobilidade, e que possui uma instalação rápida e simplificada.

2.3. DEFINIÇÃO DA GEOMETRIA DA ESTRUTURA

2.3.1. DIMENSÕES GERAIS DA ESTRUTURA

Posteriormente ao estudo da localização da ponte, é necessário caracterizar o seu traçado longitudinal, tendo sido feito um estudo das cotas do terreno onde a ponte é implantada. A partir de uma planta topográfica (Anexo A1) são retiradas as cotas mais importantes do terreno. É de referir que, como se está perante uma passagem superior sobre uma via de comunicação já existente, o terreno em ambos os acessos encontra-se sensivelmente à mesma cota (Figura 15).

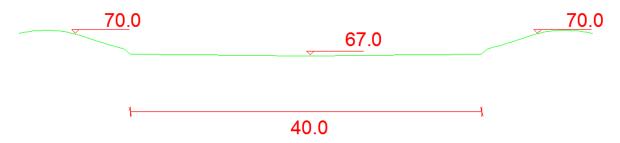


Figura 15 – Cotas do terreno de implantação.

Tendo a Via de Cintura Interna uma largura de cerca de 40.0 m, verifica-se que a ponte tem que vencer a distância aproximada de 56.0 m. Sendo o seu traçado definido por três concordâncias, que são descritas a partir de quatro traineis (Figura 16).

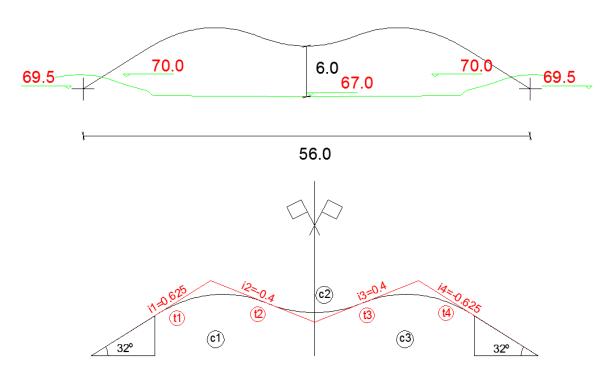


Figura 16 – Esquema da definição geométrica do perfil longitudinal.

Uma vez que o acesso à ponte é feito a partir de escadas, estas fazem um ângulo com o plano horizontal de 32°, ou seja, os extremos do tabuleiro são definidos por retas com 9.434 m de comprimento e 0.625 de declive.

Por forma a garantir a continuidade dos troços retilíneos, os traineis t1 e t4 apresentam também um declive de 0.625, e os traineis t2 e t3 possuem um declive de -0.4 e 0.4, respetivamente.

Os raios das concordâncias e os declives dos traineis estão apresentados, sucintamente, na Tabela 1.

Tabela 1 – Raios das concordâncias e declives dos traineis.

Concordância	Raios	Traineis	Declives dos Traineis
	42.55	- t1	+0.625
c1	13.66	- t2	-0.4
c2	-15		
c3	13.66	- t3 	+0.4
		- t4	-0.625

Assim, a ponte vence um comprimento total de 56 m e garante uma distância, da base inferior do tabuleiro ao pavimento da via, de 6 m, valor superior ao limite definido na secção anterior do presente trabalho.

O tabuleiro da ponte é suportado por quinze cabos amarrados em três mastros distintos, como se pode verificar no esquema em planta da Figura 17.

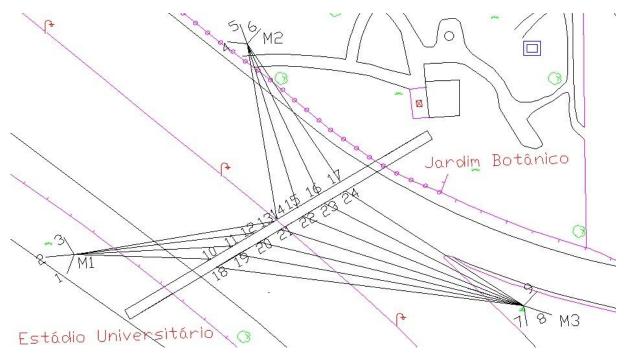


Figura 17 – Esquema da ponte em planta.

Os mastros 1 e 2 encontram-se implantados no Estádio Universitário e Jardim Botânico, respetivamente. O mastro 3 está localizado numa zona de separação de faixas, terreno pertencente à Universidade do Porto.

Cada mastro, com uma inclinação de 5º na direção da ponte, possui um comprimento de 16 m, e três cabos auxiliares fixos ao solo. A Figura 18 representa o esquema de um dos mastros.

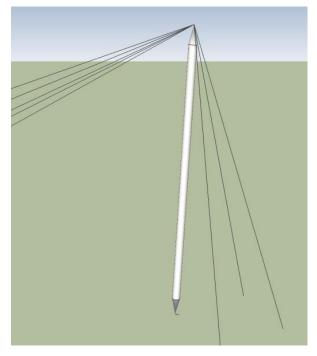


Figura 18 – Esquema de um mastro com os respetivos cabos.

Foi admitida uma secção circular tubular constante na zona central e extremidades cónicas. As dimensões máximas da secção dos mastros estão representadas na Figura 19.

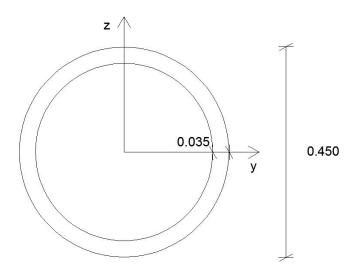


Figura 19 – Dimensões máximas da secção dos mastros (dimensões em metros).

A amarração dos cabos centrais (13, 14 e 21) ao tabuleiro, por motivo de serem os mais esforçados, é realizada através de uma chapa localizada por baixo do tabuleiro, com a largura do mesmo, e com um desenvolvimento de 0.750 m e espessura de 0.020 m. O esquema de amarração dos cabos da zona central está representado na Figura 20.

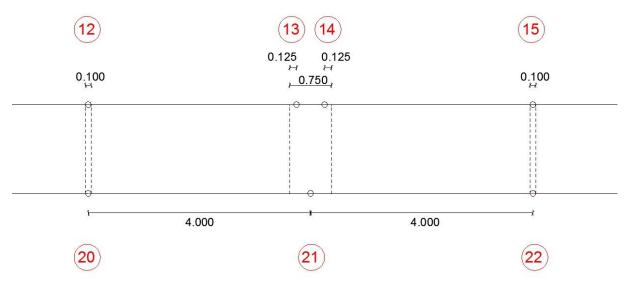


Figura 20 – Esquema da zona central de amarração dos cabos (dimensões em metros).

A amarração dos restantes cabos é realizada através de perfis tubulares quadrados (com 0.1000 m de lado e 0.0045 m de espessura de parede) soldados na zona inferior do tabuleiro (Figura 20 e Figura 21).

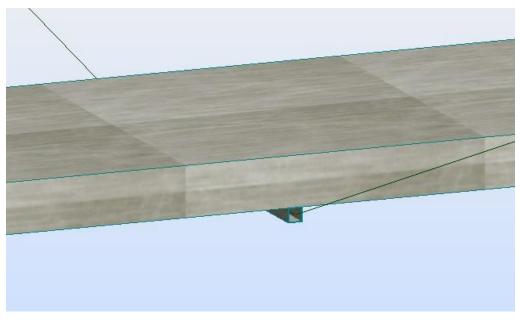


Figura 21 – Esquema dos perfis tubulares quadrados na zona inferior do tabuleiro.

2.3.2. DIMENSÕES PRINCIPAIS DA SECÇÃO TRANSVERSAL DO TABULEIRO

Como já referido, está-se perante um tabuleiro com um perfil longitudinal complexo. O facto de ser definido por três concordâncias faz com que a escolha da secção do tabuleiro não seja fácil nem intuitiva, visto que não se pretende arcos facetados – constituídos por vários troços retos.

Contudo, por forma a facilitar a execução das concordâncias, este tabuleiro é constituído por um conjunto de troços de tubos, unidos através de uma cola, mais especificamente, através de uma resina epóxido.

Os tubos vão servir de separadores para as duas chapas de aço coladas na parte superior e inferior do tabuleiro.

Este tabuleiro baseia-se num sistema semelhante aos painéis *sandwich*³ utilizados atualmente. No entanto, o chamado núcleo central, neste caso, trata-se de um núcleo resistente em termos estruturais.

Com o intuito de aligeirar algumas zonas do tabuleiro, definem-se dois tipos de secção — uma constituída por tubos com espessura de parede de 5 mm e outra definida com tubos com espessura de parede de apenas 3 mm. Contudo, apesar da espessura dos tubos variar, o seu diâmetro externo mantém-se constante, ou seja, apenas varia o diâmetro interno. Na Figura 22, as zonas com tubos com espessura de parede de 5 mm estão representadas a vermelho, possuindo os tubos das restantes zonas uma espessura de parede de 3 mm.

-

³ Painéis constituídos por uma estrutura de três camadas: duas lâminas finas, separadas por uma camada de material de baixa densidade menos rígido e menos resistente.

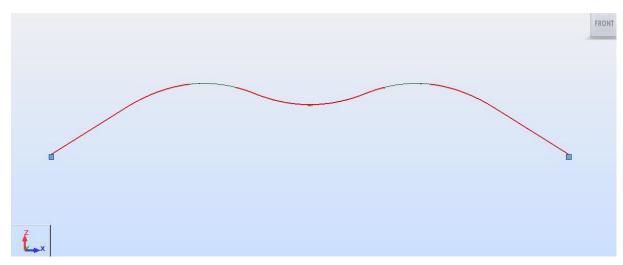


Figura 22 – Esquema das zonas onde a secção possui tubos com espessura de parede de 5 mm.

A Figura 23 representa a secção do tabuleiro com os guarda-corpos.

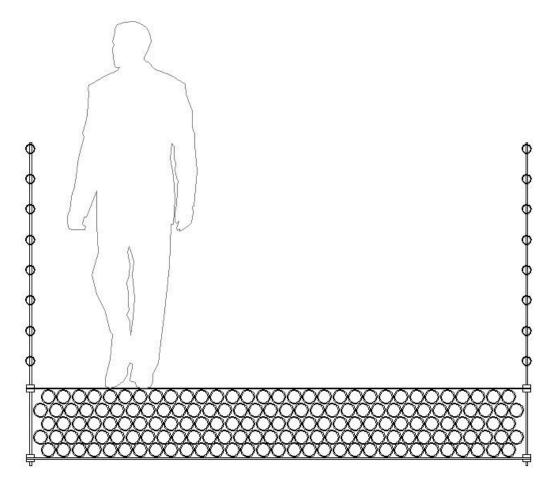


Figura 23 – Secção transversal do tabuleiro.

Em suma, o tabuleiro é constituído por duas chapas de aço com 5 mm de espessura e cinco filas de tubos com diâmetro exterior de 76.1 mm, formando um tabuleiro com 2.5 m de largura e 0.35 m de altura.

2.3.3. ESQUEMA GERAL DA PONTE

O modelo em três dimensões do projeto está representado na Figura 24.

Figura 24 – Modelo em três dimensões da ponte (vista no sentido Norte-Sul).

Na Figura 25 está apresentado um esquiço realizado pela Arquiteta Bárbara Rangel, onde se pode verificar o enquadramento da ponte, vista a partir da Via de Cintura Interna, no sentido Sul-Norte.

Por outro lado, a ponte e o respetivo cenário envolvente, no sentido Norte-Sul, estão representados no esquiço da Figura 26.

Figura 25 – Esquiço da ponte no sentido Sul-Norte.

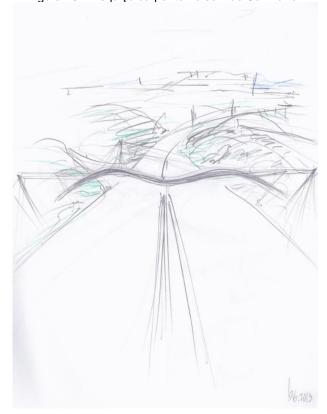


Figura 26 – Esquiço da ponte no sentido Norte-Sul.

Relativamente aos acessos, a Figura 27 e a Figura 28 representam esquiços dos acessos a partir do Estádio Universitário e do Jardim Botânico, respetivamente.

Figura 27 – Acesso a partir do Estádio Universitário.

Figura 28 – Acesso a partir do Jardim Botânico.

No Anexo A2 encontram-se mais esquiços da ponte e desenhos de pormenor da zona das guardas.

3 MATERIAIS

3.1. DESCRIÇÃO GERAL

A descrição e definição do material utilizado na ponte em estudo é essencial para uma melhor perceção do trabalho que está a ser desenvolvido.

Neste estudo, os materiais escolhidos não têm como principal critério o fator económico, na medida em que se trata de uma obra de arte fora do habitual e com uma geometria peculiar. Por outro lado, os materiais constituintes escolhidos proporcionam um método construtivo simples e rápido da realização do tabuleiro.

Os materiais adotados neste projeto são os seguintes:

- Tabuleiro constituído por tubos e chapas de aço colados com resina epóxido;
- Guardas em tubos de aço;
- Cabos e mastros em aço.

3.2. Adesivos Estruturais

Entre as diversas técnicas para a ligação dos vários elementos estruturais, as mais comuns são as soldaduras, rebitagem, aparafusagem e colagem.

Como já foi referido no presente trabalho, a união dos tubos que compõem o tabuleiro é realizada através de adesivos, pelo que a abordagem destes é essencial.

A facilidade de realizar juntas de ligação simples, resistentes e económicas usando adesivos tem provocado um aumento significativo de aplicações desta tecnologia de ligação. [12]

A designação de adesivo estrutural deriva da capacidade deste transmitir grandes esforços de um elemento para outro. Na realidade, a grandeza de esforços possíveis de transmitir com adesivos está na ordem de grandeza da envolvida nas ligações soldadas, rebitadas ou aparafusadas. [12]

A utilização de adesivos já existe há muitos anos. Inicialmente, utilizavam-se colas de origem animal e vegetal, usadas na colagem de materiais porosos como o papel. [13] Contudo, houve a necessidade de criar adesivos com melhores características, principalmente na colagem entre elementos de metal. Assim, desenvolveram-se adesivos baseados em resinas sintéticas, onde a grande evolução ocorreu com a descoberta das resinas epóxido. [12]

Os adesivos sintéticos resultam de reações de polimerização entre monómeros⁴, ou seja, um polímero é uma longa cadeia de átomos ligados entre si. Estas reações também sofrem intervenção de outros componentes, os endurecedores, e são responsáveis pela secagem, resistência física, química e mecânica do material.

No presente estudo, o adesivo utilizado na construção do tabuleiro é um adesivo epóxido. As razões desta escolha derivam do facto de este adesivo possuir boas características de resistência mecânica, e bom comportamento, quando utilizado na união de dois elementos metálicos.

As resinas epóxido fazem parte das resinas termoendurecíveis. Esta família possui uma grande rigidez após a sua polimerização, e isto deve-se ao facto de serem polímeros largamente reticulados⁵, como se pode verificar na Figura 29. Estas resinas quando submetidas a temperaturas muito elevadas entram em degradação e não em fusão. [12]

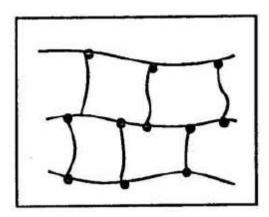


Figura 29 – Estrutura molecular reticulada das resinas termoendurecíveis. [12]

A cola utilizada no presente trabalho é comercializada sob a forma de dois componentes - Araldite AW 106 com endurecedor do tipo HV 933 U. Num adesivo dividido em dois componentes o processo de cura pode começar a partir de uma temperatura de 5° C. Por outro lado num adesivo de um só componente a cura só se processa a partir de 120° C.

As características da cola utilizada são as seguintes [14]:

- Módulo de Young (E_r) de 1200 MPa;
- Coeficiente de Poisson (v_r) de 0.33;
- Tensão limite de elasticidade à compressão (σ_{rc}) de 45.3 MPa;
- Tensão limite de elasticidade ao corte (σ_{rv}) no intervalo 14 17 MPa;
- Tensão limite de elasticidade à tração (σ_{rt}) de 22.3 MPa.

A ficha técnica deste material encontra-se no Anexo A3.

⁴ Moléculas que reagem entre elas dando origem a polímeros.

⁵ Pontos de ligação entre cadeias de moléculas.

3.3. Aço

O aço é uma liga metálica formada principalmente por ferro e carbono, cuja percentagem pode variar entre 0.008% e 2.110%. Esta variação altera significativamente as características do metal.

Por volta de 1700 a.C., o ferro começou a ser trabalhado pelo homem, mas apenas no século XVII foram adicionadas pequenas quantidades de carbono como componentes das ligas metálicas. Contudo, só com a Revolução Industrial, e com o consequente desenvolvimento, é que o aço se tornou, até aos dias de hoje, o material metálico mais importante na construção civil. [15]

Atualmente, o aço é definido através de mais de três mil composições químicas, e devido às suas vantagens, esta liga substitui o ferro na grande maioria das aplicações.

Uma grande vantagem do aço é a sua resistência mecânica. Mais especificamente, o aço possui uma resistência entre 360 MPa e 550 MPa para o aço macio⁶, podendo atingir os 1850 MPa para aços de alta resistência. O seu módulo de elasticidade também é alto, rondando valores de 210 GPa para os aços mais comuns. Estas características permitem que este material seja utilizado na construção de estruturas leves e esbeltas.

Outra vantagem do aço é a sua isotropia, isto é, independentemente da direção considerada, as suas propriedades mecânicas são constantes, respondendo de forma idêntica quando submetido à tração ou compressão.

A Figura 30 apresenta uma tabela do $EC3^7$ onde se encontram os valores nominais de tensão de cedência, f_v , e tensão de cedência última, f_u , para aços laminados a quente.

⁷ Eurocódigo 3

_

⁶ Aço com percentagem de carbono entre 0.15% e 0.30%.

Norma	Espessura nominal t do componente da secção [mm]						
e classe de aço	t ≤ 40	0 mm	40 mm < t ≤ 80 mm				
	f _y [N/mm ²]	f _u [N/mm ²]	f _y [N/mm ²]	f _u [N/mm ²]			
EN 10025-2							
S 235	235	360	215	360			
S 275	275	430	255	410			
S 355	355	490	335	470			
S 450	440	550	410	550			
EN 10025-3							
S 275 N/NL	275	390	255	370			
S 355 N/NL	355	490	335	470			
S 420 N/NL	420	520	390	520			
S 460 N/NL	460	540	430	540			
EN 10025-4							
S 275 M/MIL	275	370	255	360			
S 355 M/ML	355	470	335	450			
S 420 M/ML	420	520	390	500			
S 460 M/ML	460	540	430	530			
EN 10025-5							
S 235 W	235	360	215	340			
S 355 W	355	490	335	490			
EN 10025-6							
S 460 Q/QL/QL1	460	570	440	550			
EN 10210-1	Part of Control Parts	0					
S 235 H	235	360	215	340			
S 275 H	275	430	255	410			
S 355 H	355	510	335	490			
S 275 NH/NLH	275	390	255	370			
S 355 NH/NLH	355	490	335	470			
S 420 NH/NLH	420	540	540 390				
S 460 NH/NLH	460	560	430	550			
EN 10219-1		E:					
S 235 H	235	360					
S 275 H	275	430					
S 355 H	355	510					
S 275 NH/NLH	275	370					
S 355 NH/NLH	355	470					
S 460 NH/NLH	460	550					
S 275 MH/MLH	275	360					
S 355 MH/MLH	355	470					
S 420 MH/MLH	420	500					
S 460 MH/MLH	460	530					

Figura 30 – Valores nominais da tensão de cedência f_y e da tensão última à tração f_u para aços laminados a quente. [16]

O fator económico também é vantajoso. O principal componente do aço - o ferro - possui um preço reduzido devido à sua abundancia e facilidade de exploração. É de acrescentar que o processo de fabrico do aço é simples e económico.

Contudo, o aço apresenta também algumas desvantagens. As variações significativas de temperatura (coeficiente de dilatação linear de 1.2×10^5 /°C) provocam alterações dos esforços instalados devido à alteração das dimensões. A corrosão das estruturas metálicas também é um fator a ter em conta, visto

que esta ocorre na presença de ambientes quimicamente agressivos, ou com elevada humidade relativa do ar.

De forma a prevenir os efeitos mencionados anteriormente, torna-se inevitável recorrer à sua proteção através de pinturas ou revestimentos, ou utilização de aços específicos resistentes à corrosão.

Os elementos estruturais metálicos presentes na estrutura em estudo possuem as seguintes características:

- Tubos de secção circular⁸ que compõem o tabuleiro Norma N 10219 e classe de aço S235 H;
- Perfis tubulares de secção quadrada utilizados para a amarração dos cabos Norma N 10219 e classe de aço S235 H;
- Perfis tubulares de secção circular que definem os mastros Norma N 10025 e classe de aço \$235.
- Chapa utilizada no centro do tabuleiro para a amarração dos 3 cabos centrais Norma N 10219 e classe de aço S235;
- Cabos⁹ tensão de cálculo de aproximadamente 1500 MPa.

_

 $^{^8}$ Todos os perfis tubulares em aço escolhidos são do Grupo Ferpinta cujo catálogo encontra-se no Anexo A4.

⁹ Os cabos escolhidos são da empresa Redaelli e o catálogo encontra-se no Anexo A5.

4 ANÁLISE E DIMENSIONAMENTO DA ESTRUTURA

4.1. ENSAIO EM LABORATÓRIO

4.1.1. OBJETIVO DO ENSAIO

A solução da secção do tabuleiro, apresentada na secção 2.3, é algo diferente do habitual, logo um estudo baseado em casos já existentes não é possível. Na realidade, esta secção não é só constituída por um conjunto de tubos de aço entre duas chapas, mas também pelo material que os faz trabalhar como um só na resistência às ações atuantes – resina epóxido. Assim, a modelação deste tabuleiro em programas de cálculo apropriados estaria incorreta se, na caracterização da geometria e material da secção, apenas fossem considerados os tubos e as chapas de aço funcionando solidariamente.

Pode-se então concluir que é necessário estudar a influência da resina epóxido na rigidez da secção.

Assim, o ensaio realizado no âmbito deste trabalho não só tem como objetivo determinar a contribuição da resina epóxido para o comportamento do tabuleiro, mas também verificar a fiabilidade do modelo de barras 3D realizado para o estudo da estrutura global.

4.1.2. DESCRIÇÃO DO ENSAIO

Este ensaio tem como objetivo verificar a rigidez à flexão de um provete com uma secção semelhante à do tabuleiro. Para isso, é construído o provete apresentado na Figura 31, que apresenta as seguintes características:

- Constituído por três filas de tubos circulares entre duas chapas;
- Os tubos possuem um diâmetro externo de 6 mm e espessura de parede de 1 mm;
- A chapa superior e a inferior têm 0.8 mm de espessura;
- O material utilizado nas chapas e nos tubos é o alumínio (com E_a=70GPa);
- A cola utilizada na junção do conjunto é Araldite Standard¹⁰.
- O provete tem uma espessura total de 1.9 cm, 9.6 cm de largura e um comprimento de 24.7 cm.

¹⁰ Araldite AW 106 com endurecedor do tipo HV 933 U, com características descritas na secção 3.2 deste trabalho.

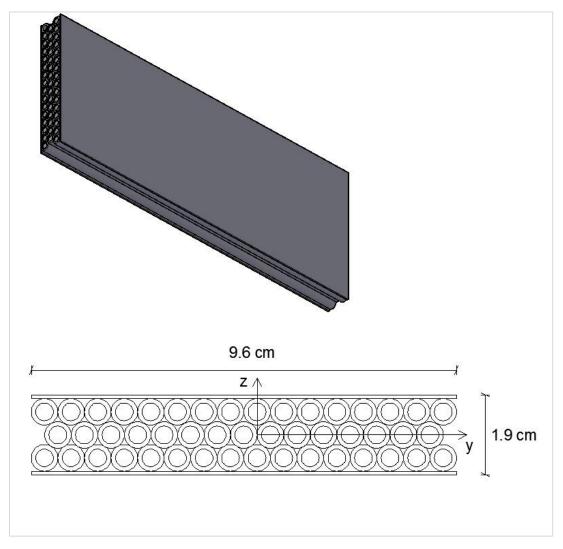


Figura 31 – Dimensões e eixos considerados no provete submetido a ensaio.

No presente ensaio, o provete é utilizado como uma consola, onde é aplicada uma carga crescente na extremidade desimpedida, e são medidos os respetivos deslocamentos (Figura 32).



Figura 32 – Fotografia do provete antes de ser submetido ao ensaio.

Contudo, por não ter sido possível considerar um encastramento perfeito no âmbito experimental, e de forma a controlar a possibilidade de escorregamentos, ou flexibilidade da estrutura de suporte, procedeu-se à soldadura de uma barra metálica na extremidade encastrada do provete (Figura 33). Desta forma, é possível medir os deslocamentos na extremidade desta barra através de um micrómetro digital e calcular a rigidez de rotação do apoio.

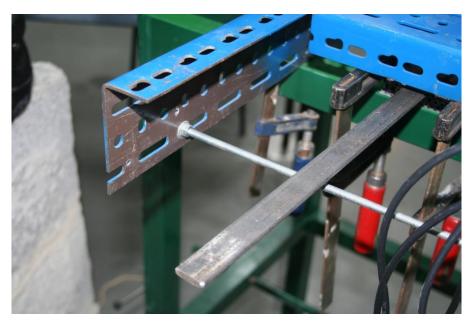


Figura 33 – Fotografia da barra metálica soldada à extremidade do provete.

A Figura 34 representa o esquema estrutural do provete. O apoio está bloqueado na direção vertical e horizontal. A rigidez de rotação é representada por uma mola, que possui a rigidez da zona de encastramento do ensaio.

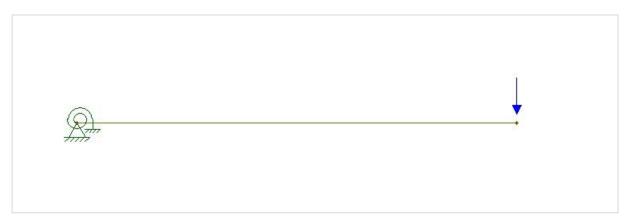


Figura 34 – Esquema estrutural do provete ensaiado.

A carga aplicada na extremidade do provete é induzida através de um encurtamento imposto num cabo metálico preso a uma roldana (Figura 35). Desta forma é possível submeter o provete a um aumento de força lento e gradual, o que facilita o ensaio, visto que não se pretende levar o provete à rotura.

Figura 35 – Fotografia da zona responsável pela aplicação da carga.

Os deslocamentos e a força aplicada são medidos através de um defletómetro e de uma célula de carga, respetivamente, (Figura 36 e Figura 37). Estes transmitem os dados para um computador que, por sua vez, regista o processo através de um gráfico de força deslocamento.

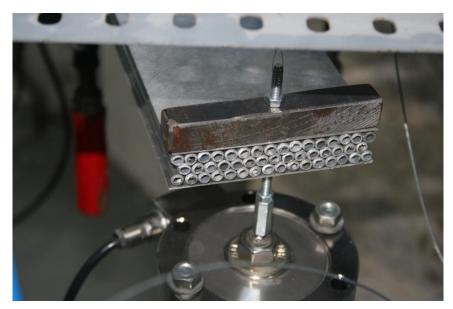


Figura 36 – Fotografia da célula de carga.

Figura 37 – Fotografia do defletómetro.

4.1.3. MODELO DE BARRAS

Como já referido anteriormente, o objetivo do ensaio é a comparação do comportamento real do provete quando submetido a cargas, com um modelo de barras 3D, realizado no mesmo programa utilizado para o modelo global da ponte.

O programa utilizado no âmbito deste trabalho é o *Autodesk Robot Structural Analysis Professional* 2012 versão 25.0.0.3774. Assim, é realizado um modelo de quatro barras longitudinais e oito barras

transversais. As quatro barras possuem as características geométricas da secção transversal do provete dividido em quatro partes iguais, Figura 38.

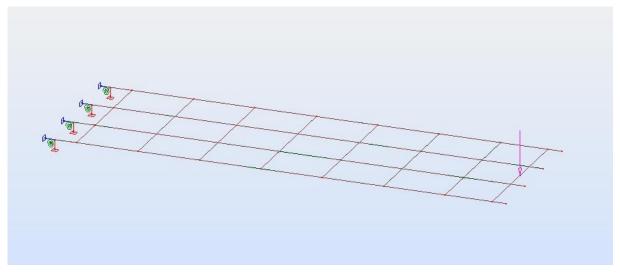


Figura 38 – Modelo de barras, no Robot, do provete submetido ao ensaio.

Por outro lado, as oito barras transversais apenas possuem as características geométricas da chapa superior e inferior, ou seja, é desprezada a resistência proveniente do conjunto de tubos. Esta decisão também é adotada no modelo global da ponte, por razões conservativas, descritas no capítulo 4.2.

Na Figura 39, pode-se verificar que a zona de encastramento do provete não tem uma dimensão claramente definida, logo, segundo as dimensões do esquema representativo do encastramento, Figura 40, optou-se por considerar o provete encastrado a 2.38 cm da extremidade, ou seja, 2 cm mais 20% de 1.9 cm.

Figura 39 – Fotografia da zona de encastramento do provete.

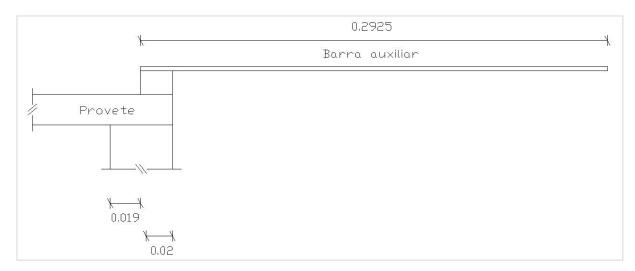


Figura 40 – Esquema representativo da zona de encastramento do provete (dimensões em metros).

Como já referido, o encastramento considerado no ensaio não é perfeito, logo é necessário utilizar os deslocamentos medidos na extremidade da barra soldada ao provete, para aplicar uma rigidez de rotação no apoio do modelo. A rigidez é determinada a partir das expressões (1) e (2).

$$K = \frac{M}{\theta} \tag{1}$$

$$K = \frac{PL}{\theta}$$
 (2)

Nestas expressões Mé o momento na zona do apoio, resultante do produto entre a força P, e a distância da força ao apoio, L (Figura 41).

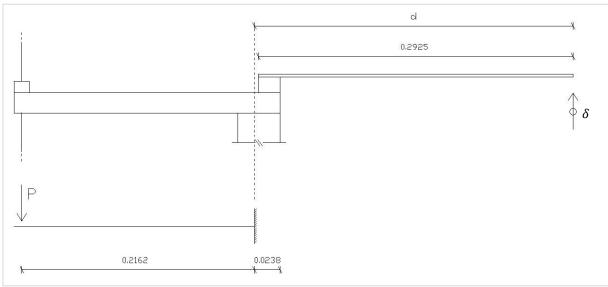


Figura 41 – Esquema geral do provete submetido ao ensaio e esquema estrutural (dimensões em metros).

A rotação na zona do apoio, θ , é calculada através da expressão (3).

$$\theta = \operatorname{arctg}\left(\frac{\delta}{d}\right) \tag{3}$$

Assim, δ é o deslocamento medido na extremidade da barra soldada ao provete através de um micrómetro digital, e d representa o comprimento da barra a partir da zona admitida como encastrada (Figura 40).

Durante o ensaio, foi possível verificar que, em média, para uma força P de 0.303 kN, ocorria um deslocamento vertical na extremidade da barra de 0.57 mm. Assim, através da expressão (3), resulta uma rotação de 1.9237×10^{-3} rad.

$$\theta = \arctan\left(\frac{\delta}{d}\right)$$

$$\theta = \arctan\left(\frac{0.00057}{0.01900 \times 0.20000 + 0.29250}\right)$$

$$\theta = 1.92372 \times 10^{-3} \text{ rad}$$
(4)

Posteriormente, é calculada a rigidez de rotação através da expressão (2).

$$K = \frac{PL}{\theta}$$

$$K = \frac{0.3030 \times 0.2162}{1.9237 \times 10^{-3}}$$

$$K = 34 \text{ kNm/rad}$$
(2)

Assim, é admitida uma rigidez de rotação, em cada apoio das barras longitudinais do modelo, de 34 kNm/rad dividida pelas quatro barras, Figura 42.

Figura 42 - Apoios do modelo de barras 3D no Robot.

4.1.4. ANÁLISE E DISCUSSÃO DOS RESULTADOS

Os resultados obtidos no ensaio experimental estão apresentados em tabela no Anexo A6. O gráfico da Figura 43 representa os valores de força e deslocamento apresentados nesse anexo.

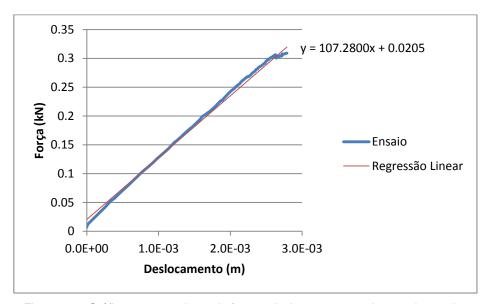


Figura 43 – Gráfico com os valores de força e deslocamento resultantes do ensaio.

Com o intuito de determinar a rigidez do provete, e sabendo que o seu comportamento no ensaio foi linear, pode-se utilizar a expressão (5).

$$K = \frac{Força}{Deslocamento} \tag{5}$$

Assim, pode-se verificar no gráfico da Figura 43 que, fazendo uma aproximação linear dos dados, o declive da reta formada é, aproximadamente, a rigidez do provete quando submetido às cargas anteriormente descritas. Desta forma, tem-se uma rigidez de 107.28 kN/m.

No modelo realizado no *Robot* são colocados os mesmos valores das forças atuantes durante o ensaio. Os resultados obtidos estão no Anexo A6, e apresentados no gráfico da Figura 44.

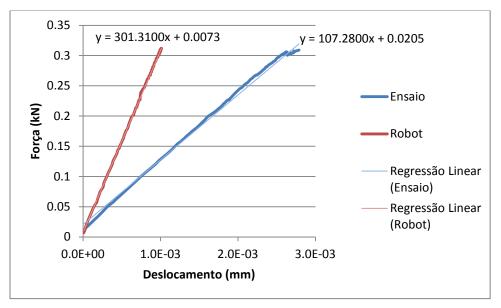


Figura 44 - Gráfico com os valores de força e deslocamento resultantes do ensaio e do modelo Robot.

Procedendo da mesma forma com estes resultados, obtém-se uma rigidez do modelo de 301.31 kN/m. Pode-se concluir, que o modelo realizado em *Robot* é 2.81 vezes mais rígido, do que o modelo experimental.

Esta diferença entre os resultados teóricos e experimentais deve-se ao facto de o modelo de barras considerar que os tubos e chapas de alumínio trabalham em solidariedade. Na realidade, pode-se verificar que a ligação realizada com cola torna o provete, aproximadamente, três vezes mais flexível.

Os resultados deste ensaio influenciam o modelo global de barras, abordado nos capítulos seguintes, através de um coeficiente que reduz o valor do momento de inércia na direção y das longarinas. Este fator tem como objetivo simular a influência do comportamento da cola.

É importante referir, que para uma melhor análise, é necessária a realização de mais ensaios, nomeadamente ensaios à torção, flexão com o provete apoiado nas duas extremidades, ensaios de longa duração para o estudo da fadiga na cola, ensaios à escala real, entre outros. No âmbito deste estudo, apenas foi possível realizar o presente ensaio simplificado.

O momento de inércia na direção z, e o momento de inércia à torção não têm qualquer tipo de fator corretivo devido à falta de ensaios. No entanto, a inércia da secção na direção y é a mais importante, e a que mais influencia o comportamento da estrutura, sendo por isso a única que é tratada com algum pormenor.

Com base neste ensaio, admite-se um fator redutor de 0.35 (inverso de 2.85) para o momento de inércia na direção y, que caracteriza as longarinas do modelo global da estrutura.

4.2. MODELAÇÃO DA ESTRUTURA

Ao longo deste trabalho foram realizados modelos que simulam o comportamento da estrutura para resolver os problemas que surgem no seu dimensionamento.

No caso em estudo é escolhido o programa *Autodesk Robot Structural Analysis Professional* 2012 versão 25.0.0.3774, visto que o mesmo programa é utilizado no modelo representativo do provete ensaiado.

Este modelo global é constituído por elementos de barra tridimensionais, que representam o tabuleiro da estrutura através de três longarinas encastradas nas extremidades, carlingas espaçadas de 1 m e os 3 mastros responsáveis pelo suporte dos cabos.

Os cabos são representados por barras com definições específicas para cabos existentes no programa.

Para uma melhor perceção do modelo é necessário referir que foram considerados os eixos x, y e z, como eixo longitudinal, transversal e vertical do tabuleiro da ponte, respetivamente.

4.2.1. MODELAÇÃO DO TABULEIRO

Longarinas

A modelação do tabuleiro é feita de forma semelhante à modelação do provete ensaiado. Logo, é necessário que as três longarinas possuam as características geométricas idênticas às reais (com as devidas correções). Para tal, são calculadas áreas e inércias do tabuleiro dividido em três partes. A divisão do tabuleiro e os seus eixos considerados estão representados na Figura 45.

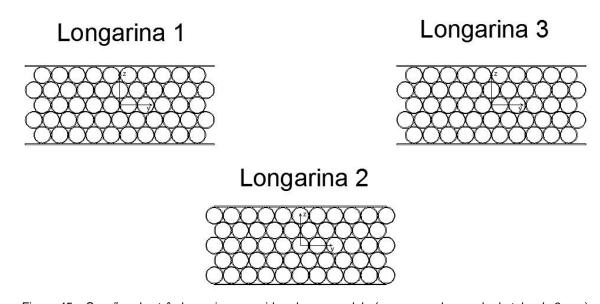


Figura 45 – Secções das três longarinas consideradas no modelo (espessura da parede do tubo de 3 mm).

Com base nas conclusões retiradas do ensaio realizado na secção 4.1, os valores do momento de inércia corrigidos são apresentados na Tabela 2. Estas características representam as secções atribuídas às três longarinas, em duas direções, com tubos de espessura de parede de 3 mm e 5 mm.

T	D ~		~			
Tabela 2 –	1)otinicão	dae	200000	dae	trão	longarinae

	Longarina 1		Longa	Longarina 2		Longarina 3	
Espess.	3 mm	5 mm	3 mm	5 mm	3 mm	5 mm	
$A_x (m^2)$	0.044196466	0.066446482	0.044124417	0.066802318	0.044196466	0.066446482	
I _y (m ⁴)	0.000199274	0.000269093	0.000197828	0.000271577	0.000199274	0.000269093	
I _z (m ⁴)	0.002378052	0.003549413	0.002981110	0.004602471	0.002378052	0.003549413	
V _y (m)	0.418550000	0.418550000	0.418550000	0.418550000	0.418550000	0.418550000	
V _{py} (m)	0.418550000	0.418550000	0.418550000	0.418550000	0.418550000	0.418550000	
V _z (m)	0.174859066	0.174859066	0.174859066	0.174859066	0.174859066	0.174859066	
V _{pz} (m)	0.174859066	0.174859066	0.174859066	0.174859066	0.174859066	0.174859066	

Na Tabela 2, também estão representados todos os valores necessários para completar a definição da secção no programa *Robot*, onde os valores de V_y , V_{py} , V_z e V_{pz} representam as distâncias da fibra mais afastada em relação aos eixos locais da secção (Figura 46).

O valor da área total da secção é representado por A_x.

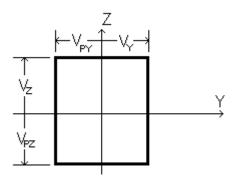


Figura 46 – Imagem representativa dos valores de $V_y,\,V_{py},\,V_z$ e $V_{pz},\,$ no programa.

A determinação do momento de inércia torção, I_x , teve maior atenção, devido às dificuldades que a geometria desta secção traz ao cálculo. Como a seção é constituída por um conjunto de tubos circulares fixos entre si através de uma cola, está-se perante um conjunto de várias secções tubulares de parede delgada que trabalham em conjunto na resistência aos momentos torsores.

Assim, as fórmulas existentes para o cálculo do momento de inércia à torção, não abrangem de forma alguma a secção em estudo. A utilização de programas como o *Robot* ou *Fagus 4* também não apresentaram resultados por se tratar de várias secções fechadas.

Inicialmente a secção foi simplificada, passando do conjunto de tubos circulares para um conjunto de tubos de secção quadrada, alinhados e juntos entre si, de lado l^{11} . Para a determinação de l é igualada a

_

¹¹ Lado do contorno exterior da parede do tubo.

área de aço de um tubo circular com espessura e à área de um tubo quadrado com a mesma espessura, expressão (6).

$$\pi \left(\frac{d^2}{4} - \frac{(d-2e)^2}{4} \right) = l^2 - (l-2e)^2$$
 (6)

Os valores de l obtidos para as espessuras de 3 mm e 5 mm são 0.060412 m e 0.060841 m, respetivamente. Assim, cada longarina fica com uma secção semelhante à apresentada na Figura 47.

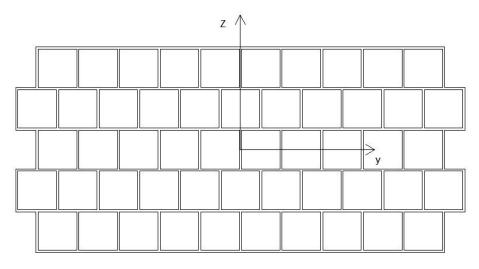


Figura 47 – Secção simplificada das longarinas 1 e 3 com espessura de parede de 3 mm.

A secção apresentada possui características que permitem que o programa *Fagus 4* calcule o seu momento de inércia à torção, cujo resultado, no caso da Figura 47, é de 0.000602 m⁴.

Contudo, com o intuito de ganhar confiança nos resultados retirados do *Fagus 4*, submeteu-se uma secção com apenas dois tubos quadrados com a mesma dimensão dos da secção anteriormente apresentada (Figura 48).

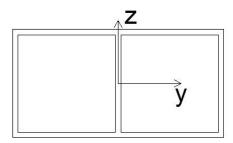


Figura 48 – Secção com apenas dois tubos quadrados de parede delgada.

Em seguida, são realizados cálculos teóricos baseados na teoria das secções tubulares de paredes delgadas. Foi possível concluir rapidamente que, neste caso, o fluxo de corte na parede central é desprezável, isto é, apenas o contorno contribui para a resistência à torção. A expressão (7) apresenta a condição, que quando verdadeira, apenas o contorno da secção é resistente. [17]

$$\frac{L_1}{\Omega_1 e_1} = \frac{L_2}{\Omega_2 e_2} \tag{7}$$

Na expressão (7) L_1 e L_2 representam o perímetro do primeiro e segundo quadrado, respetivamente, formado pela linha média dos contornos das paredes. E Ω_1 e Ω_2 designam a área definida pela linha média do contorno dos dois quadrados.

As espessuras e_1 e e_2 representam a espessura das paredes que definem o primeiro e segundo quadrado, respetivamente. A condição apresentada pela expressão (7) é independente da espessura da parede comum às duas secções tubulares quadradas.

Assim, é utilizada a expressão (8) (tabelada para secções fechadas de parede delgada), no cálculo do momento de inércia torção da secção da Figura 48, considerando apenas o contorno.

$$I_{x} = \frac{4 \Omega^{4} e}{I_{x}} \tag{8}$$

Nesta expressão Ω é agora a área definida pela linha média do contorno do retângulo formado pelos dois quadrados, e L o perímetro do mesmo. Resulta da expressão (8) um valor de $0.000002000 \, \text{m}^4$.

O resultado de I_x proveniente do Fagus 4, da secção da Figura 48, é de 0.000002 m⁴.

Conclui-se então, que não só o Fagus 4 apresenta resultados credíveis, como que se estaria do lado da segurança se apenas se admitisse o contorno da secção da Figura 47.

Assim sendo, são calculados os momentos de inércia à torção das secções das três longarinas, através da expressão (8). Estes valores estão apresentados na Tabela 3.

Tabela 3 – Valores dos momentos de inércia à torção das três longarinas.

		$I_x (m^4)$	
Espessura (mm)	Longarina 1	Longarina 2	Longarina 3
3	0.00018060	0.00017719	0.00018060
5	0.00034096	0.00035268	0.00034096

A Figura 49 e a Figura 50 representam as secções consideradas para o cálculo do momento de inércia à torção das longarinas 1 e 3 e da longarina 2, respetivamente.

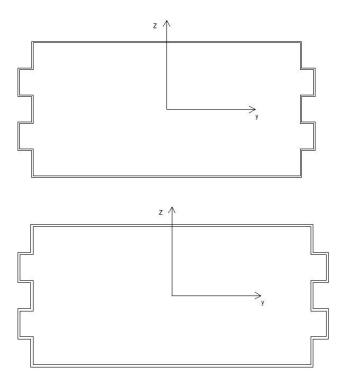


Figura 49 - Secção considerada para o cálculo do momento de inércia à torção das longarinas 1 e 3, com 3 e 5 mm de espessura de tubos.

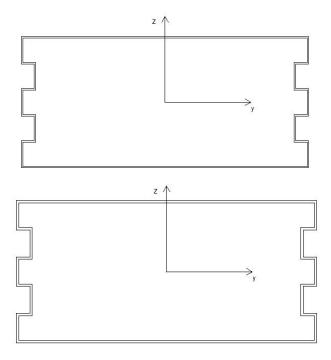


Figura 50 - Secção considerada para o cálculo do momento de inércia à torção da longarina 2, com 3 e 5 mm de espessura de tubos.

Carlingas

As carlingas do tabuleiro são responsáveis pela transmissão de cargas às longarinas e apenas é considerada a secção das chapas superior e inferior do tabuleiro. Os tubos que espaçam as chapas são desprezados, ou seja, apenas são utilizados os valores de momento de inércia das chapas para caracterizar as carlingas.

Contudo, ainda foi necessário modelar a chapa que se encontra na zona central sob o tabuleiro, que funciona como zona de amarração dos três cabos centrais.

A chapa é representada através de três barras longitudinais e três transversais. As barras estão definidas com as características geométricas da secção da chapa dividida em três partes. Estas últimas barras são definidas com um material que possui peso volúmico nulo. Isto deve-se ao facto do material das barras nas duas direções se sobreporem.

Para a realização da ligação da chapa ao restante tabuleiro são definidas seis barras fictícias verticais de elevada rigidez e de peso volúmico nulo, que unem estes dois elementos. A Figura 51 representa o modelo de barras criado no centro do tabuleiro.

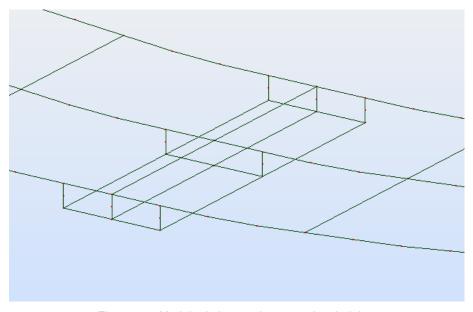


Figura 51 - Modelo de barras do centro do tabuleiro.

A amarração dos restantes cabos ao longo do tabuleiro é feita numa barra com secção tubular. Cada tubo possui um cabo em cada extremidade, Figura 52.

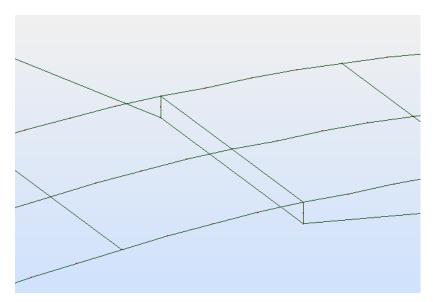


Figura 52 – Modelo de barras da zona de amarração dos cabos.

Estes elementos estão unidos ao tabuleiro de maneira semelhante à chapa central referida anteriormente.

O modelo de barras tridimensionais do tabuleiro com os restantes elementos de suporte dos cabos está representado na Figura 53.

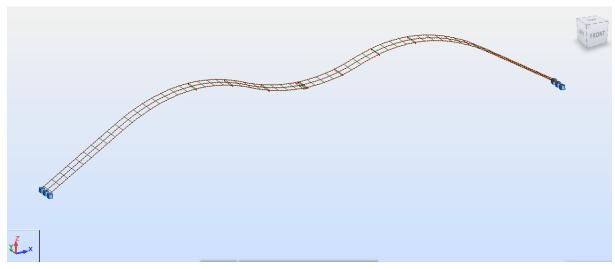


Figura 53 – Modelo de barras tridimensionais do tabuleiro.

4.2.2. MODELAÇÃO DOS CABOS E MASTROS

Cabos

Primeiramente foi necessário escolher que tipo de elemento iria definir os cabos – dividindo um elemento em várias barras e considera-las treliças que só resistem à tração ou elementos de cabo existentes no *Robot*.

A estrutura em estudo apenas possui um total de 24 cabos o que facilita os cálculos do programa em uso. Ao atribuir a um elemento a característica de cabo definida pelo *Robot*, automaticamente a análise realizada por este programa torna-se numa análise não-linear.

O estudo do comportamento não-linear desta estrutura é muito importante devido à existência de cabos. Os cabos são elementos que quando solicitados sofrem deslocamentos provenientes da geometria do seu traçado e deslocamentos associados à Lei de Hooke. É possível referir então que o comportamento não-linear desta estrutura deve-se à sua não linearidade geométrica.

Na realidade não existe apenas uma não linearidade geométrica, mas também, uma não linearidade do material. Na estrutura em estudo esta última não vai ser considerada, visto que o aço apresenta um comportamento de tensão e deformação praticamente linear.

A não linearidade geométrica dá-se quando um elemento é solicitado por um carregamento, que leva a uma alteração da geometria do mesmo. Esta alteração da geometria traz um acréscimo de rigidez ao elemento, assim, o aumento de rigidez vai levar a uma alteração nos deslocamentos do elemento. Está-se então perante uma análise estrutural que se realiza, não apenas através de uma só configuração inicial, mas também, através de diferentes deformadas que convergem para uma deformada final.

Assim sendo, uma análise não-linear pode ser calculada através de diversos processos iterativos. O método iterativo utilizado pelo programa em uso é o Método de *Newton-Raphson*, onde a matriz de rigidez da estrutura é alterada de iteração para iteração.

A opção de cabos no *Robot* permite aplicar um pré-esforço nos cabos através de um encurtamento dos mesmo, ΔL. Através da expressão (9) é possível calcular o pré-esforço atuante.

$$N = \frac{\Delta L E A}{I} \tag{9}$$

Onde E é o Módulo de Young, A a área de aço, L o comprimento do cabo e N a força de pré-esforço.

A escolha do pré-esforço a aplicar implicou um processo de tentativas, tendo como únicas ações apenas o peso próprio da estrutura. Considerando que a estrutura no futuro vai sofrer pequenas deformações permanentes devido à fadiga, é imposta, para uma combinação onde apenas as cargas permanentes atuam, uma contra-flecha a meio vão de 2.52 cm.

Assim sendo, os valores de pré-esforço aplicados nos cabos são apresentados na Tabela 4.

Tabela 4 – Valor do pré-esforco instalado nos cabos

Cabo	L (m)	– valor do pre-eΔL (m)	sforço instalado n E (kPa)	A (m ²)	N (kN)
	. ,		, ,		
1	16.252	0.042	165000000	1.841×10 ⁻³	785.043
2	16.591	0.042	165000000	1.841×10 ⁻³	768.973
3	16.252	0.042	165000000	1.841×10 ⁻³	785.043
4	16.252	0.029	165000000	1.841×10 ⁻³	542.053
5	16.270	0.029	165000000	1.841×10 ⁻³	541.438
6	16.252	0.029	165000000	1.841×10 ⁻³	542.054
7	16.252	0.059	165000000	1.841×10 ⁻³	1102.798
8	16.613	0.059	165000000	1.841×10 ⁻³	1078.810
9	16.252	0.059	165000000	1.841×10 ⁻³	1102.798
10	23.289	0.025	165000000	1.077×10 ⁻³	190.762
11	26.659	0.025	165000000	1.077×10 ⁻³	166.644
12	30.494	0.025	165000000	1.077×10 ⁻³	145.687
13	33.970	0.050	165000000	1.077×10 ⁻³	261.564
14	30.354	0.020	165000000	1.077×10 ⁻³	117.088
15	29.104	0.020	165000000	1.077×10 ⁻³	122.119
16	28.040	0.020	165000000	1.077×10 ⁻³	126.753
17	27.839	0.020	165000000	1.077×10 ⁻³	127.666
18	50.004	0.023	165000000	1.077×10 ⁻³	81.738
19	47.058	0.023	165000000	1.077×10 ⁻³	86.855
20	44.450	0.030	165000000	1.077×10 ⁻³	119.936
21	41.876	0.062	165000000	1.077×10 ⁻³	263.103
22	39.264	0.032	165000000	1.077×10 ⁻³	144.829
23	36.735	0.024	165000000	1.077×10 ⁻³	116.100
24	34.755	0.024	165000000	1.077×10 ⁻³	122.715

Mastros

No que diz respeito à modelação dos mastros, como já referido na secção 2.3.1, estes encontram-se com uma inclinação de 5° e altura de 16 m, como representado na Figura 54. A secção é definida no *Robot* com as características geométricas descritas inicialmente.

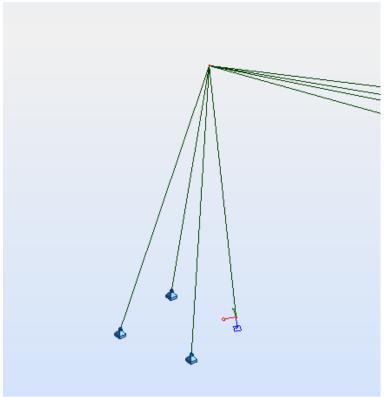


Figura 54 – Modelo de um mastro.

Na Figura 55 estão representadas as definições dos apoios, no *Robot*, das barras que modelam os mastros. Pode-se verificar que estes encontram-se fixos nas direções x, y e z, e as rotações em y e z encontram-se livres. Apenas a rotação em torno do eixo x (eixo representado a azul na Figura 54) está impedida, caso contrário a barra estava livre de rodar em torno do próprio eixo.

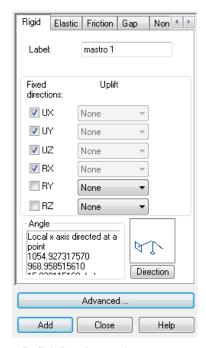


Figura 55 – Definições dos apoios no programa Robot.

A Figura 56 apresenta o modelo global da estrutura com tabuleiro, mastros e cabos.

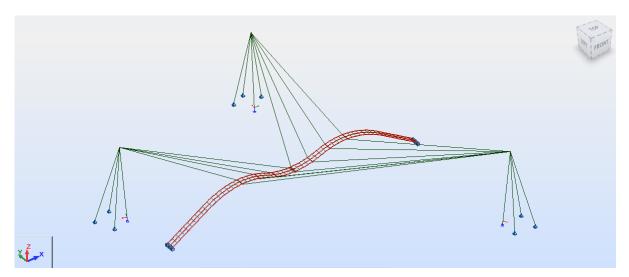


Figura 56 - Modelo global da estrutura com tabuleiro, mastros e cabos.

4.3. ANÁLISE ESTÁTICA DA ESTRUTURA

4.3.1. SOLICITAÇÕES

Ações permanentes

As ações permanentes são o peso da estrutura, isto é, todos os materiais constituintes do tabuleiro, mastros e cabos.

O *Robot* calcula automaticamente o peso próprio da estrutura a partir das características dos materiais usados. Sendo assim, apenas é aumentado 10% do peso próprio da ponte com o intuito de representar revestimentos e possíveis elementos que no futuro a ponte possa conter.

Sobrecarga de utilização

Os casos de sobrecarga considerados no EC1¹² para pontes pedonais englobam uma carga uniformemente distribuída (vertical e horizontal) e uma carga concentrada.

A expressão (10) representa a expressão utilizada para o cálculo da sobrecarga uniformemente distribuída. Sendo L o comprimento do vão carregado, ou seja 56 m, resulta um valor de, aproximadamente, 4 kN/m^2 .

$$q_{fk} = 2 + \frac{120}{L + 30} \tag{10}$$

Posto isto, e segundo o EC1, o valor da carga uniformemente distribuída horizontal é igual a 10% do valor total da carga vertical, isto é, 1 kN/m (largura de tabuleiro de 2.5 m).

¹² Eurocódigo 1

Relativamente à carga concentrada, esta é definida por um quadrado de 0.10 m de lado, onde resulta uma carga concentrada de 10 kN. Os efeitos desta ação não são significativos face às restantes, assim sendo, esta é desprezada no estudo da estrutura.

Os valores reduzidos da ação sobrecarga são: [18]

 $\psi_0 = 0.40$

 $\psi_1 = 0.40$

 $\psi_2 = 0.00$

Ação do Vento

A ação do vento é considerada uma ação variável e de avaliação indispensável. Como qualquer fenómeno natural, a análise desta ação envolve fenómenos aleatórios que dificultam o estudo da mesma. Para uma correta avaliação das consequências desta ação sobre uma estrutura seria necessário realizar um estudo dinâmico de grande complexidade, o que não é possível devido à falta de meios.

Posto isto, a avaliação desta ação é considerada através de um estudo estático onde são calculadas forças equivalentes que simulam as instabilidades provocadas pelo vento em diferentes direções.

É usado o EC1 para a determinação das forças estáticas equivalentes. Apesar das normas não serem aplicáveis a pontes com altura variável e com cabos, que se trata do caso em estudo, por falta de métodos de cálculo utilizou-se o Método Simplificado do EC1.

Em concordância com o EC1, o valor de referência da velocidade do vento é dado por,

$$v_b = c_{dir} \ c_{season} \ v_{b,0} \tag{11}$$

Onde c_{dir} corresponde ao coeficiente de direção e c_{season} ao coeficiente de sazão. Ambos são considerados unitários.

Para a obtenção do valor básico da velocidade de referência do vento, $v_{b,0}$, é necessário consultar o Anexo Nacional. Este divide Portugal em duas zonas - zona A e zona B. Como a estrutura em estudo se localiza a menos de 5 km da costa oceânica, está inserida na zona B, logo o valor de referência da velocidade do vento, v_b , é de 30 m/s.

A velocidade do vento também varia com a altura a que se encontra o tabuleiro. Este facto entra no cálculo através dos coeficientes de rugosidade do terreno e orografia, representados por $c_r(z)$ e $c_o(z)$, respetivamente.

O coeficiente de rugosidade é calculado através da expressão (12).

$$c_r(z) = k_r \ln\left(\frac{z}{z_0}\right)$$
 $para \ z_{min} \le z \le z_{max}$ (12)

O comprimento de rugosidade, z_0 , e a altura mínima, z_{min} , são dependentes da categoria do terreno considerada. Na Tabela 5 estão apresentadas as diferentes categorias definidas pelo Anexo Nacional.

Tabela 5 - Categorias e parâmetros do terreno. [19]

Categorias do terreno	z ₀ (m)	z _{min} (m)
I – Zona costeira exposta aos ventos de mar	0.005	1
II – Zona de vegetação rasteira, tal como erva, e obstáculos isolados (árvores, edifícios) com separações entre si de, pelo menos, 20 vezes a sua altura.	0.05	3
III – Zona com uma cobertura regular de vegetação ou edifícios, ou com obstáculos isolados com separações entre si de, no máximo, 20 vezes a sua altura (por exemplo: zonas suburbanas, florestas permanentes)	0.3	8
IV – Zona na qual pelo menos 15% da superfície está coberta por edifícios com uma altura média superior a 15 m	1.0	15

A categoria adotada foi a I pelo facto da localização da ponte estar perto da zona costeira, onde z_0 e z_{min} têm valor de 0.005 e 1, respetivamente . Por outro lado z_{max} não depende da categoria do terreno e é definido pelo EC1 com o valor de 200 m.

Como já referido, ambos os coeficientes, $c_r(z)$ e $c_o(z)$, são calculados em função da altura acima do nível do solo, z. Como a ponte do presente estudo tem altura variável, foi considerada uma altura média de 7 m.

O coeficiente de terreno, k_r , é determinado a partir da expressão (13).

$$k_r = 0.19 \, \left(\frac{z_0}{z_{0,II}}\right)^{0.07}$$
 (13)

Onde $z_{0,II}$ é o valor de z_0 para um terreno de categoria II do EC1, ou seja, 0,05 m [19]. Desta forma k_r toma o valor de 0.162.

O coeficiente de orografia, $c_o(z)$, tem em consideração os efeitos relativos à orografia do terreno. Como o local da ponte em causa não apresenta características orográficas significativas, o valor escolhido foi unitário.

Assim sendo, o valor de $v_m(z)$ é definido pela expressão (14).

$$v_m(z) = c_r(z) \ c_o(z) \ v_b$$

$$v_m(z) = 1.172 \times 1 \times 30$$

$$v_m(z) = 35 \ m/s$$

Onde $c_r(z)$, resulta da expressão (15).

$$c_{r}(z) = k_{r} \ln\left(\frac{z}{z_{0}}\right)$$

$$c_{r}(z) = 0.162 \ln\left(\frac{7}{0.005}\right)$$

$$c_{r}(z) = 1.172$$
(15)

Com o resultado da velocidade média, $v_m(z)$, é possível determinar a pressão dinâmica de pico, $q_p(z)$, através da expressão (16).

$$q_p(z) = [1 + 7 \ I_v(z)] \ \frac{1}{2} \ \rho \ v_m(z)^2 \tag{16}$$

Onde ρ é a massa volúmica do ar e tem o valor recomendado de 1.25 kg/m³. Por outro lado, $I_{\nu}(z)$, intensidade de turbulência à altura z, é definida pela expressão (17).

$$I_{v}(z) = \frac{k_{l}}{c_{0}(z) \ln\left(\frac{z}{z_{0}}\right)} \quad para \ z_{min} \le z \le z_{max}$$
 (17)

 k_l é o coeficiente de turbulência cujo valor recomendado pelo EC1 é unitário.

Assim sendo, $q_p(z)$ toma o valor de 1.518 kN/m², através da expressão (18).

 $q_n(z) = 1.518 \text{ kPa}$

$$q_{p}(z) = \left[1 + 7 \ l_{v}(z)\right] \frac{1}{2} \rho \ v_{m}(z)^{2}$$

$$q_{p}(z) = \left[1 + 7 \left(\frac{k_{l}}{c_{0}(z) \ ln\left(\frac{z}{z_{0}}\right)}\right)\right] \frac{1}{2} \rho \ v_{m}(z)^{2}$$

$$q_{p}(z) = \left[1 + 7 \times \left(\frac{1}{1 \times ln\left(\frac{7}{0.005}\right)}\right)\right] \times \frac{1}{2} \times 1.25 \times 35^{2}$$
(18)

Finalmente, a força na direção x, que simula a ação do vento na direção transversal do tabuleiro da ponte, é determinada através da expressão (19).

$$F_{w} = \frac{1}{2} \rho \ v_{b}^{2} \ C \ A_{ref,x} \tag{19}$$

C representa o coeficiente de força do vento, e é dado pela expressão (20).

$$C = c_e \ c_{f,x} \tag{20}$$

Onde c_e representa o coeficiente de exposição fornecido através da razão entre $q_p(z)$ e a pressão dinâmica de referência, q_b , calculada com a expressão (21).

$$q_b = \frac{1}{2} \rho \ v_b^2 \tag{21}$$

Perante estas expressões faz-se uma simplificação da expressão que define a força do vento na direcção x com o intuito de simplificar os cálculos realizados. Pode-se verificar que,

$$F_{w} = \frac{1}{2} \rho \ v_{b}^{2} \ C \ A_{ref,x}$$

$$F_{w} = \frac{1}{2} \rho \ v_{b}^{2} (c_{e} \ c_{f,x}) \ A_{ref,x}$$

$$F_{w} = \frac{1}{2} \rho \ v_{b}^{2} \left(\frac{q_{p}(z)}{q_{b}} \ c_{f,x}\right) A_{ref,x}$$

$$(19)$$

Tendo em conta a expressão (21) tem-se,

$$F_w = q_p(z) \ c_{f,x} \ A_{ref,x} \tag{22}$$

Onde o coeficiente de força na direção x, $c_{f,x}$, é igual a $c_{fx,0}$.

Para definir, $c_{fx,0}$, é necessário consultar o gráfico do EC1, apresentado na Figura 57, que relaciona este coeficiente com a razão b/d_{tot} .

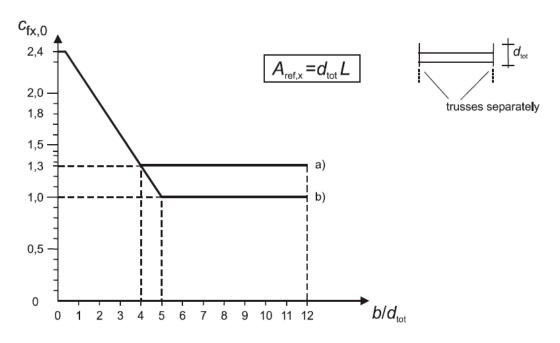


Figura 57 - Gráfico que relaciona $c_{fx,0}$ com a razão b/d_{tot}. [19]

O valor de d_{tot}, é determinado através da Tabela 6 do EC1.

Tabela 6- Valores de dtot a considerar através do EC1. [19]

Barreiras de Segurança	Num lado	Nos dois lados
Guarda-corpo vazado ou guarda de segurança vazada	d + 0.3 m	d + 0.6 m
Guarda-corpo não vazado ou guarda de segurança não vazada	d + d ₁	d + 2d ₁
Guarda-corpo vazado e guarda de segurança vazada	d + 0.6 m	d + 1.2 m

Os guarda-corpos escolhidos para o presente projeto são definidos por tubos circulares de aço com 5 cm de diâmetro, espaçados de 10 cm, com uma altura total de 1.1 m, logo trata-se de guarda-corpos vazados, nos dois lados da ponte. Desta forma, o valor de d_{tot} é igual a 0.95 m e, sendo b a largura do tabuleiro com 2.5 m, b/d_{tot} tem o valor de 2.63. Consultando o gráfico da Figura 57 constata-se que o valor de $c_{fx,0}$ é, aproximadamente, 1.7.

A área de referência, $A_{ref,x}$, é calculada a partir do produto de d_{tot} com o comprimento total do tabuleiro, L. Como o comprimento total da ponte é de 60.52 m, tem-se um valor de $A_{ref,x}$ igual a 154.32 m².

Assim, usando a expressão (22), tem-se,

$$F_{w} = q_{p}(z) c_{f,x} A_{ref,x}$$
 (22)
 $F_{w} = 1.518 \times 1.7 \times 154.32$
 $F_{w} = 398.23 \text{ kN}$

Ao dividir 398.23 kN pelo desenvolvimento total da ponte (L=60.5 m), tem-se uma força do vento linear horizontal na direção transversal do tabuleiro de 6.58 kN/m.

No que diz respeito à força vertical do vento, isto é, na direção z, o EC1, juntamento com o Anexo Nacional, fornece o valor de ± 0.9 para o coeficiente de força $c_{f,z}$. Também nesta direção tem-se uma área de referência, $A_{ref,z}$, que se define pelo produto de b, largura do tabuleiro (2.5 m), com L, desenvolvimento total do tabuleiro.

Como tal, a força do vento na direção vertical em relação ao tabuleiro tem um valor de ± 1.37 kN/m².

Na direção y, ou seja, a força horizontal que atua na direção longitudinal do tabuleiro, em concordância com o EC1, é 25% das forças produzidas pelo vento na direção x para pontes com tabuleiro de vigas de alma cheia, e 50% para tabuleiros de vigas treliçadas. [19]

Dado que o tabuleiro do presente projeto não se adequa a nenhuma destas hipóteses, é considerada a opção mais crítica, isto é, 50% das forças produzidas pelo vento na direção x. Sendo assim, o valor da força em y é de 1.32 kN/m^2 .

Relativamente à solicitação do vento nos cabos da ponte, o EC1 não especifica nenhum método para a sua determinação. Como tal utiliza-se o RSA¹³ para determinar os valores de pressão do vento e forças a atuar nos cabos.

O valor da pressão dinâmica do vento é dado pela expressão (23).

$$w = 0.613 v^2 (23)$$

Considerando v como a velocidade de referência, 30 m/s, w toma o valor de 0.55 kN/m^2 .

Para o cálculo da força atuante por unidade de comprimento do elemento (direção normal em relação ao seu eixo), é necessário usar a expressão (24). [20]

$$F = \delta_f \ d \ w \tag{24}$$

O valor do coeficiente de força para fios e cabos, δ_f , é definido através da Tabela 7 do RSA.

53

¹³ Regulamento de Segurança e Ações para Edifícios e Pontes

Tabela 7 – Coeficientes de força para fios e cabos de comprimentos infinito. [20]

	d√w	Características da superfície	$\delta_{ m f}$
Fios	-	-	1.2
	< 0.015	Cordões finos	1.2
	V 0.010	Cordões grossos	1.3
Cabos			
	≥ 0.015	Cordões finos	0.9
	<u>~</u> 0.010	Cordões grossos	1.1

O valor de $d\sqrt{w}$ é de 0.030, para os cabos com diâmetro igual a 40 mm e 0.039 para os cabos com diâmetro de 52 mm. Como ambos são superiores a 0.015 e está-se perante cordões grossos, o valor de δ_f admitido é 1.1.

Finalmente, tem-se uma força de $0.024~\rm kN/m$ e $0.031~\rm kN/m$ a atuar nos cabos com diâmetro de $40~\rm mm$ e $52~\rm mm$, respetivamente.

Os valores reduzidos da ação do vento são: [18]

 $\psi_0 = 0.30$

 $\psi_1 = 0.20$

 $\psi_2 = 0.00$

Ação da temperatura

As ações da temperatura são um importante alvo de avaliação na medida em que estas podem provocar esforços significativos devido à dilatação e contração de diferentes elementos da estrutura.

Para a caracterização desta ação foram consultadas as regras do EC1 Parte 1.5. Os efeitos das ações térmicas incluem duas vertentes — a variação uniforme de temperatura em toda a ponte e a variação diferencial de temperatura no tabuleiro.

Primeiramente foi necessário escolher em que tipo de tabuleiro, definido pelo EC1, o caso em estudo se enquadra. Tratando-se de um tabuleiro constituído principalmente por aço concluiu-se que se tratava do Tipo 1.

Em seguida define-se a temperatura mínima e máxima do ar à sombra no local do projeto. Para tal é utilizado o Anexo Nacional, onde se encontra no Porto uma temperatura mínima de 0°C e máxima de 40°C. Assim sendo, é efetuado o cálculo das temperaturas uniformes máxima e mínima na ponte através das expressões apresentadas no gráfico da Figura 58 presente no EC1, correspondentes a um tabuleiro de Tipo 1.

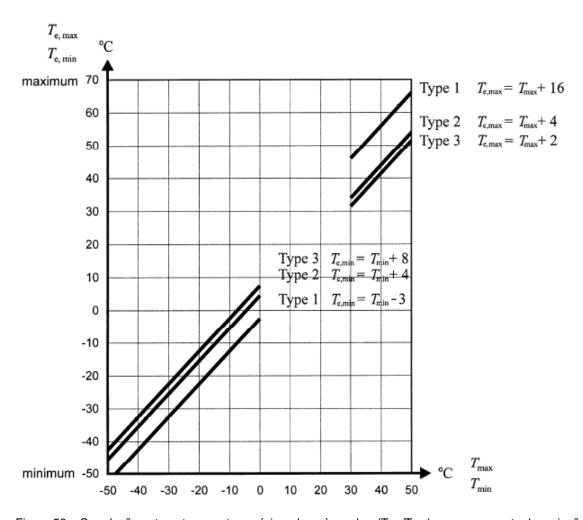


Figura 58 – Correlação entre a temperatura mínima do ar à sombra (T_{min}/T_{max}) e a componente da variação uniforme de temperatura mínima/máxima em pontes (T_{e,min}/T_{e,max}).[21]

Desta forma, os valores de $T_{e,min}$ e $T_{e,max}$ são -3°C e 56°C, respetivamente.

A variação uniforme de temperatura da ponte também depende da temperatura inicial da mesma, T_0 . No caso de falta de informação o Anexo Nacional indica que se pode considerar uma temperatura inicial de 15°C.

Sendo assim, o valor característico da amplitude de contração máxima da componente de variação uniforme de temperatura da ponte, $\Delta T_{N,con}$, é dada pela expressão (25).

$$\Delta T_{N,con} = T_{e,min} - T_0 = -3 - 15 = -18^{\circ} \text{C}$$
 (25)

Para o cálculo do valor característico da amplitude de dilatação máxima da componente da variação uniforme de temperatura da ponte, $\Delta T_{N,exp}$, é usada a expressão (26).

$$\Delta T_{N,exp} = T_{e,max} - T_0 = 56 - 15 = 41^{\circ} C$$
 (26)

Em relação às variações diferenciais de temperatura, o EC1 fornece valores que dependem do tipo de tabuleiro adotado. Consultando a Tabela 8, conclui-se que para um tabuleiro de Tipo 1 os valores de $\Delta T_{M,heat}$ e $\Delta T_{M,cool}$ são 18°C e 12°C, respetivamente.

Tabela 8 - Valores recomendados da componente linear da variação diferencial de temperatura para diferentes tipos de tabuleiro de pontes rodoviárias, pedonais e ferroviárias. [21]

Tipo de tabuleiro	Face superior mais quente do que a face inferior	Face inferior mais quente do que a face superior
	$\Delta T_{M,heat}(^{0}C)$	$\Delta T_{M,cool}(^{0}C)$
Tipo 1:	18	13
Tabuleiro de aço	10	13
Tipo 2:	15	18
Tabuleiro misto aço-betão	10	10
Tipo 3:		
Tabuleiro de betão:		
- viga em caixão	10	5
- laje vigada	15	8
- laje	15	8

Dado que estes valores são indicados para tabuleiros com uma espessura do revestimento da superfície de 50 mm, é necessário corrigi-los através de um fator k_{sur} , apresentado na Tabela 9.

Tabela 9 - Valores recomendados de k_{sur} a considerar para diferentes espessuras do revestimento da superfície.[21]

Pontes rodoviárias, pedonais e ferroviárias								
	Tip	o 1	Tip	0 2	Tipo 3			
Espessura da superfície	Face superior mais quente do que a face inferior	Face inferior mais quente do que a face superior	Face superior mais quente do que a face inferior	Face inferior mais quente do que a face superior	Face superior mais quente do que a face inferior	Face inferior mais quente do que a face superior		
[mm]	k_{sur}	k_{sur}	k _{sur}	k _{sur}	k _{sur}	k_{sur}		
Sem revestimento	0.7	0.9	0.9	1.0	0.8	1.1		
Impermeabilizada ¹⁾	1.6	0.6	1.1	0.9	1.5	1.0		
50	1.0	1.0	1.0	1.0	1.0	1.0		
100	0.7	1.2	1.0	1.0	0.7	1.0		
150	0.7	1.2	1.0	1.0	0.5	1.0		
Balastro (750 mm)	0.6	1.4	0.8	1.2	0.6	1.0		

¹⁾Estes valores representam limites superiores para revestimentos de cor escura.

Para um tabuleiro de Tipo 1, e considerando uma superfície sem revestimento, os valores da variação de temperatura diferencial passam a ser $\Delta T_{M,heat}$ de 12.6°C e $\Delta T_{M,cool}$ de 11.7°C.

Os valores reduzidos da ação da temperatura são: [18]

- $\psi_0 = 0.60$
- $\psi_1 = 0.60$
- $\psi_2 = 0.50$

4.3.2. COMBINAÇÃO DE AÇÕES

Na verificação de segurança é necessário ter em conta a probabilidade das ações atuarem em simultâneo ou não. Para tal é preciso combiná-las, não só para que as consequências das mesmas sejam as mais desfavoráveis, mas também tendo muita atenção à verosimilhança da ocorrência das ações em simultâneo.

Para a realização das várias combinações tem-se como apoio o ECO.

No ajuste do pré-esforço dos cabos é necessário usar uma combinação que apenas envolva as cargas permanentes, isto é, o total do peso próprio da estrutura. Tem-se assim uma combinação permanente descrita pela expressão (27).

$$\sum G_{k,j}$$
 "+" P (27)

Onde $G_{k,j}$ é o valor característico da ação permanente j, P o valor representativo de uma ação de préesforço, "+" significa "a combinar com" e \sum significa "o efeito combinado de". [22]

Para as verificações de segurança existem diferentes estados limites que têm de ser estudados – Estado Limite Último (ELU) e Estado Limite de Serviço (ELS).

Segundo o ECO, o Estado Limite Último tem dois conjuntos de combinações, um relativo à perda de equilíbrio estático da estrutura (EQU) e outro relacionado com a rotura ou deformação excessiva da estrutura (STR). Visto que as combinações STR são as mais críticas, apenas essas são analisadas.

No Estado Limite de Serviço pretende-se verificar se as situações de utilização do projeto são adequadas face aos requisitos existentes. Assim, no ELS fazem parte combinações que dependem da duração do estado limite em causa, isto é, estados limites de longa duração (combinações quase permanentes) (28), curta duração (combinações frequentes) (29) e muito curta duração (combinações raras) (30).

$$\sum G_{k,j}" + ""P" + "\sum \psi_{2,i} Q_{k,i}$$
 (28)

$$\sum G_{k,j} "+"P" + "\psi_{l,l} Q_{k,l}" + "\sum \psi_{2,i} Q_{k,i}$$
(29)

$$\sum G_{k,j} "+"P" + ""Q_{k,1}" + "\sum \psi_{0,i} Q_{k,i}$$
(30)

Visto que a estrutura em estudo tem uma forma geométrica e uma secção fora do corrente, é necessária a realização de um elevado número de combinações. Assim, é possível uma melhor compreensão do seu comportamento e a identificação das combinações mais críticas.

Apenas as combinações mais críticas são apresentadas na secção seguinte deste estudo. As restantes encontram-se no Anexo A7.

4.3.3. ESTADO LIMITE DE SERVIÇO (ELS)

As combinações apresentadas em seguida correspondem apenas ao ELS. Estas têm o objetivo de estudar os deslocamentos máximos da estrutura em serviço e posteriormente comparar com os limites exigidos pelo EC3.

1- Combinação Permanente (ELS1¹⁴)

Esta combinação é utilizada para calcular o pré-esforço a aplicar nos cabos, através de um processo iterativo. Considera-se uma contra-flecha a meio vão de 2.52 cm para compensar efeitos de fluência futuros.

¹⁴ Primeira combinação de Estado Limite de Serviço. Apenas as combinações mais críticas são apresentadas detalhadamente, encontrando-se todas as combinações efetuadas no Anexo A7.

2- Combinação frequente com sobrecarga vertical como ação de base e ação de temperatura uniforme negativa como ação secundária (ELS3)

Esta combinação tem o intuito de quantificar o deslocamento vertical que se instala na zona do tabuleiro a meio vão. Pode-se verificar pela Figura 59 a deformada resultante, que possui um deslocamento máximo de 2.51 cm.

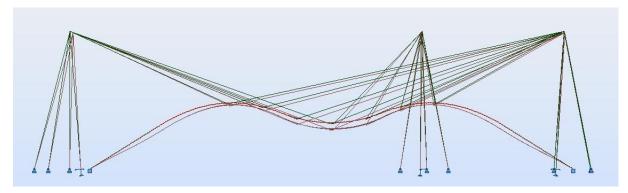


Figura 59 - Deformação para a combinação 2 (ELS3).

3- Combinação frequente com sobrecarga vertical como ação de base e variação de temperatura diferencial positiva como ação secundária (ELS4)

Nesta combinação mantém-se a sobrecarga vertical como ação de base mas altera-se a ação secundária para uma variação de temperatura diferencial. A Figura 60 representa a deformada devido a esta combinação de ações, onde o deslocamento vertical máximo do tabuleiro toma o valor de 2.38 cm, ou seja, é ligeiramente inferior ao causado pela combinação anterior.

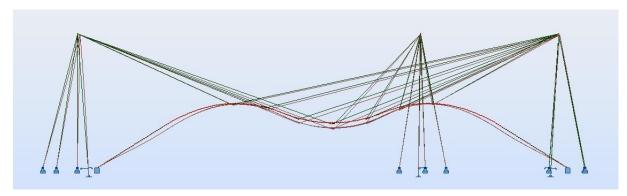


Figura 60 - Deformação para a combinação 3 (ELS4).

4- Combinação frequente com sobrecarga vertical parcial 1¹⁵ como ação de base e variação uniforme de temperatura positiva como ação secundária (ELS8)

Neste caso, a ação da temperatura uniforme positiva, que provoca deslocamentos verticais ascendentes, combinada com sobrecarga aplicada na metade esquerda do tabuleiro, levam a deslocamentos com valor de 3.38 cm. A deformada do tabuleiro está representada na Figura 61.

_

¹⁵ Sobrecarga apenas aplicada em metade do tabuleiro.

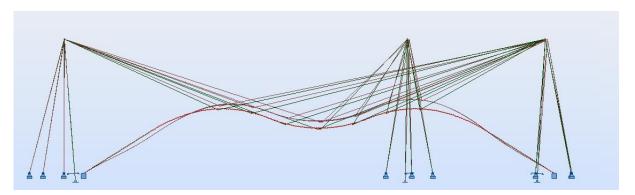


Figura 61 - Deformação para a combinação 4 (ELS8).

5- Combinação frequente com variação uniforme de temperatura positiva como ação de base (ELS11)

Esta combinação apenas possui a variação uniforme de temperatura positiva como ação de base. Combiná-la com a sobrecarga, como ação secundária, não fazia sentido visto que esta possui valor reduzido, ψ_2 , nulo.

Todavia, esta combinação provoca um deslocamento vertical ascendente de 6.35 cm, sendo este o maior deslocamento das combinações frequentes. Pode-se verificar a deformada na Figura 62.

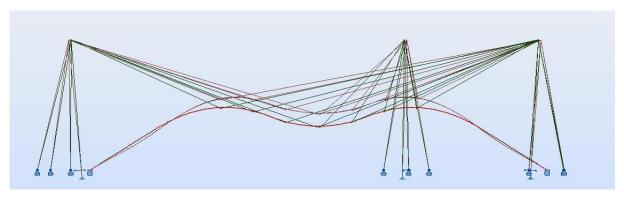


Figura 62 - Deformação para a combinação 5 (ELS11).

6- Combinação rara com sobrecarga vertical como ação de base e variação uniforme de temperatura negativa como ação secundária (ELS18)

Neste caso é avaliado o deslocamento vertical do tabuleiro proveniente da sobrecarga vertical e da variação uniforme de temperatura negativa para uma combinação rara. Pode-se verificar a deformada da estrutura na Figura 63. Desta forma tem-se um deslocamento vertical de 10.48 cm.

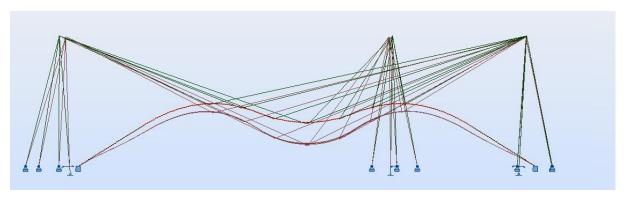


Figura 63 - Deformação para a combinação 6 (ELS18).

7- Combinação rara com sobrecarga vertical como ação de base e vento na direção vertical sentido descendente como ação secundária (ELS35)

Esta combinação envolve novamente a sobrecarga vertical mas agora com o vento a atuar no mesmo sentido e direção. Pode-se verificar que nas combinações raras o vento é mais prejudicial relativamente a deslocamentos na zona central do tabuleiro (Figura 64).

Verifica-se um deslocamento vertical de 11.22 cm.

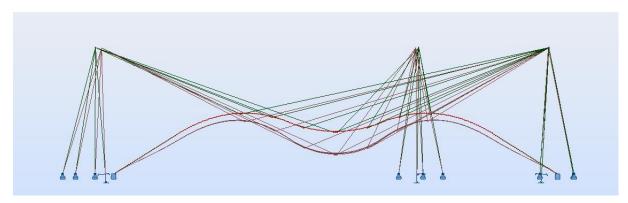


Figura 64 - Deformação para a combinação 7 (ELS35).

8- Combinação rara com vento na direção vertical sentido ascendente como ação de base (ELS37)

A presente combinação tem o objetivo de determinar o deslocamento provocado pela ação do vento quando atua no tabuleiro na direção vertical, sentido ascendente (Figura 65).

Neste caso ocorre um deslocamento de 6.72 cm.

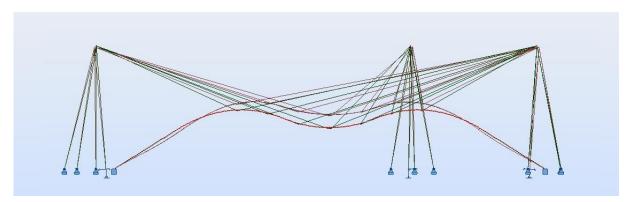


Figura 65 - Deformação para a combinação 8 (ELS37).

9- Combinação rara com vento na direção transversal como ação de base e sobrecarga horizontal como ação secundária (ELS38)

Desta combinação rara resulta um deslocamento máximo horizontal da zona central do tabuleiro de 3.51 cm. A Figura 66 representa a deformada da estrutura vista em planta.

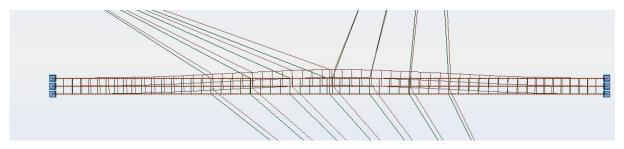


Figura 66 - Deformação para a combinação 9 (ELS38).

10- Combinação rara com sobrecarga vertical parcial 1 como ação de base e vento na direção vertical sentido descendente como ação secundária (ELS41)

Neste caso pretende-se verificar o deslocamento vertical do tabuleiro submetido ao vento como ação de base e da sobrecarga, com esta apenas aplicada em metade do tabuleiro. O deslocamento vertical resultante é de 4.63 cm, ou seja, inferior ao da combinação 7 (Figura 67).

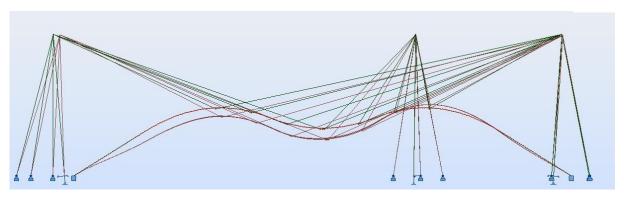


Figura 67 - Deformação para a combinação 10 (ELS41).

4.3.4. ESTADO LIMITE ÚLTIMO

Com as combinações em ELU apresentadas em seguida é possível estudar os esforços máximos instalados nos cabos e no tabuleiro da ponte. No próximo capítulo deste trabalho, não só os resultados agora apresentados são comparados com os valores resistentes das respetivas secções, como também é verificada a segurança nos mastros e restantes elementos estruturais a partir do cálculo automático realizado pelo *Robot*.

É importante recordar que a numeração dos cabos encontra-se na Figura 17.

11- Sobrecarga vertical como ação de base e vento na direção vertical sentido descendente como ação secundária (ELU42)

Quando é usada a sobrecarga vertical como ação de base e o vento no mesmo sentido e direção, obtêm-se os esforços axiais apresentados no gráfico da Figura 68.

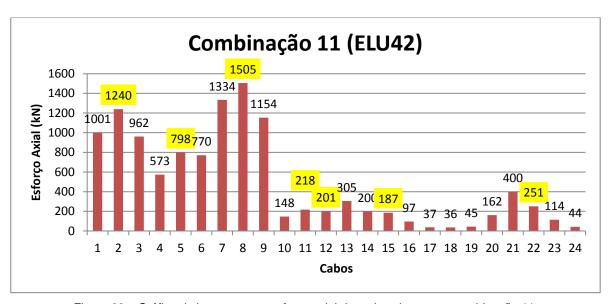


Figura 68 – Gráfico de barras com o esforço axial de cada cabo para a combinação 11.

Pode-se verificar que os cabos que se encontram com uma extremidade no solo, a montante de cada mastro (1 ao 9) possuem esforços muito mais elevados do que os restantes. Nesta combinação os cabos 2, 5, 8, 11, 12, 15 e 22 atingem o esforço axial máximo.

12- Vento na direção transversal como ação de base e sobrecarga horizontal como ação secundária (ELU49)

Desta combinação resulta o esforço axial máximo no tabuleiro da ponte. A partir do diagrama de esforços axiais apresentado na Figura 69, verifica-se que uma das barras da longarina 1 encontra-se com um esforço axial de compressão máximo de, aproximadamente, -2120 kN e esforço de tração máximo de 1761 kN.

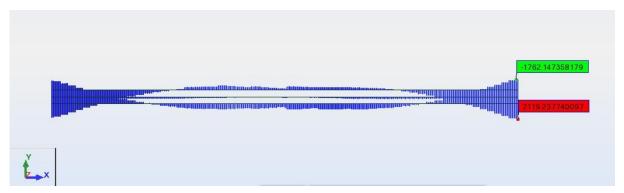


Figura 69 – Diagrama de esforços axiais¹⁶ nas longarinas para a combinação 12.

13- Sobrecarga vertical como ação de base e variação uniforme de temperatura positiva como ação secundária (ELU51)

Na Figura 70 está representado o gráfico de barras dos esforços axiais nos cabos para esta combinação.

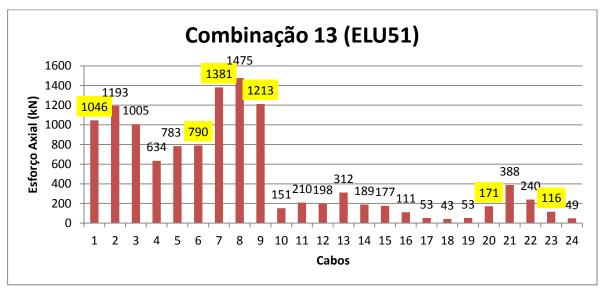


Figura 70 - Gráfico de barras com o esforço axial de cada cabo para a combinação 13-.

Pode-se verificar que os esforços variam de forma semelhante aos esforços resultantes da combinação 11, contudo, neste caso os cabos 1, 6, 7, 9, 20 e 23 atingem os valores máximos de esforço axial.

14- Sobrecarga vertical como ação de base e variação uniforme de temperatura negativa como ação secundária (ELU52)

Tal como a combinação 6, a sobrecarga vertical combinada com a variação uniforme de temperatura negativa, mas agora no ELU, também é crítica. Os esforços axiais que esta combinação provoca nos cabos estão apresentados no gráfico da Figura 71.

-

¹⁶ A convenção de sinais utilizada pelo *Robot* é simétrica comparada com a convenção utilizada neste trabalho.

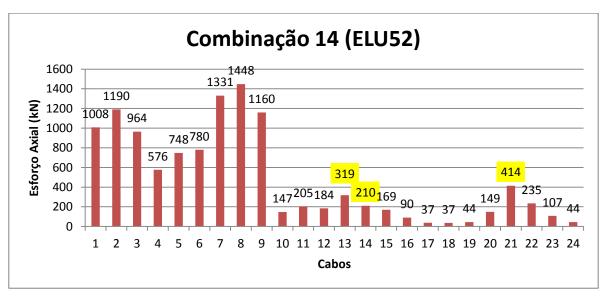


Figura 71 - Gráfico de barras com o esforço axial de cada cabo para a combinação 14.

Neste caso, os cabos 13, 14 e 21 atingem os seus valores máximos de esforço axial.

15- Sobrecarga vertical como ação de base e variação de temperatura diferencial positiva como ação secundária (ELU53)

A principal consequência desta combinação reflete-se a meio no tabuleiro da ponte. Isto é, deste caso resulta um momento máximo positivo em cada longarina de, aproximadamente, 248 kNm.

A Figura 72 representa os três diagramas de momentos (sobrepostos) das longarinas.

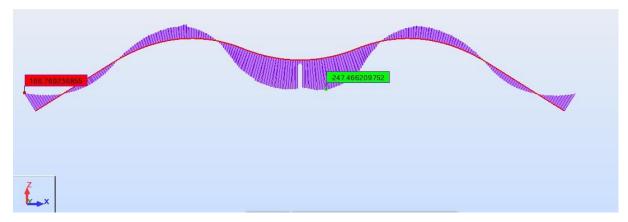


Figura 72 – Diagramas de momentos nas longarinas para a combinação 15.

16- Sobrecarga vertical parcial 1 como ação de base e variação uniforme de temperatura positiva como ação secundária (ELU54)

Quando a sobrecarga vertical, aplicada apenas na metade do lado esquerdo do tabuleiro (zona do EU), é combinada com a variação uniforme de temperatura positiva, os esforços axiais resultantes nos cabos são os apresentados no gráfico da Figura 73.

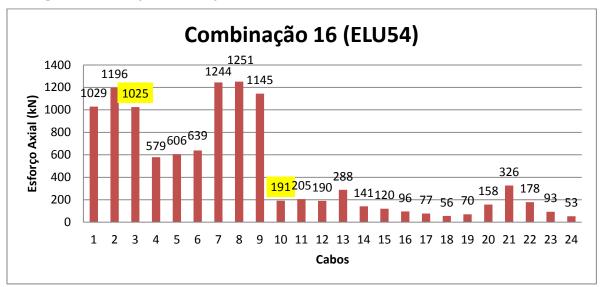


Figura 73 - Gráfico de barras com o esforço axial de cada cabo para a combinação 16.

Pode-se verificar que os cabos 3 e 10 atingem o esforço axial máximo.

17- Sobrecarga vertical parcial 1 como ação de base e variação uniforme de temperatura negativa como ação secundária (ELU55)

Nesta combinação, a sobrecarga vertical parcial 1 também atua como ação de base, mas a variação uniforme de temperatura negativa toma o lugar de ação secundária. O resultado mais significativo neste caso é o aparecimento do momento máximo negativo nas longarinas.

A Figura 74 representa os diagramas de momento fletor para esta combinação. Pode-se verificar um momento máximo negativo para cada longarina de, aproximadamente, -246 kNm.

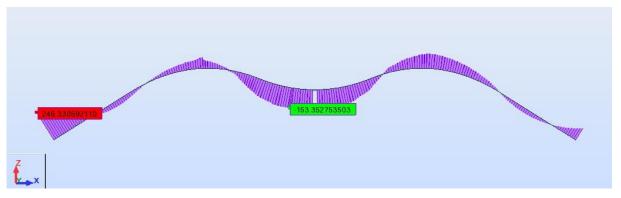


Figura 74 - Diagramas de momentos nas longarinas para a combinação 17.

18- Sobrecarga vertical parcial 1 como ação de base e variação de temperatura diferencial positiva como ação secundária (ELU56)

Mais uma vez é considerada a sobrecarga parcial 1 como ação de base, mas com a variação de temperatura diferencial positiva como ação secundária. Desta combinação resulta o esforço transverso máximo em cada longarina de, aproximadamente, 82 kN.

A partir da Figura 75, pode-se verificar que este esforço encontra-se instalado na zona do apoio.

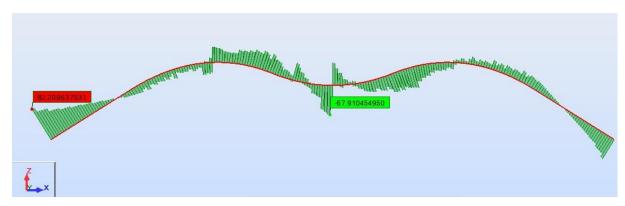


Figura 75 – Diagramas de esforço transverso nas longarinas para a combinação 18.

19- Variação uniforme de temperatura positiva como ação de base e sobrecarga vertical como ação secundária (ELU60)

Nesta combinação é invertido o papel das ações consideradas na combinação 13. Como se pode verificar no gráfico da Figura 76, a variação dos esforços entre os cabos é semelhante ao que ocorre nas restantes combinações, mas nesta os cabos 4 e 16 atingem o esforço axial máximo.

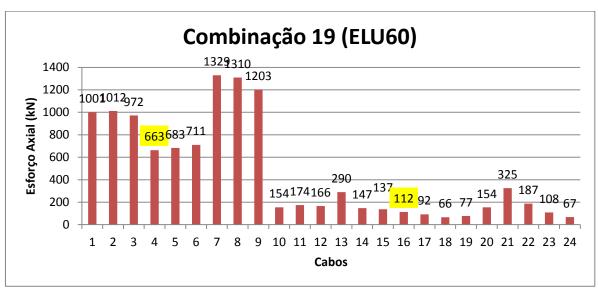


Figura 76 - Gráfico de barras com o esforço axial de cada cabo para a combinação 19.

20- Variação uniforme de temperatura positiva como ação de base e sobrecarga vertical parcial 1 como ação secundária (ELU63)

Por fim, os cabos 17, 18, 19 e 24 estão submetidos a um esforço axial máximo quando a variação uniforme de temperatura positiva atua como ação de base e a sobrecarga vertical apenas aplicada no lado esquerdo do tabuleiro (zona do EU) tem o papel de ação secundária.

A Figura 77 representa os esforços axiais em cada cabo no caso desta combinação.

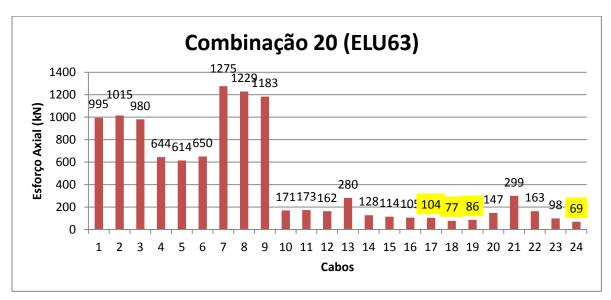


Figura 77 - Gráfico de barras com o esforço axial de cada cabo para a combinação 20.

Contudo, esta combinação é responsável por provocar as tensões mais elevadas na estrutura. A Figura 78 representa um mapa de tensões máximas nas barras que constituem as longarinas, podendo verificar que na zona dos apoios tem-se a tensão mais elevada de, aproximadamente, -203 MPa.

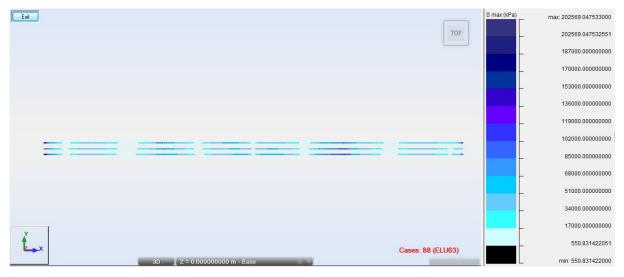


Figura 78 – Mapa de tensões máximas para a combinação 20.

4.3.5. RESUMO DOS RESULTADOS OBTIDOS

De forma a sintetizar e simplificar os resultados obtidos através da análise estática dos esforços axiais nos cabos da estrutura, é apresentado na Figura 79 um gráfico de barras que representa o esforço axial em cada cabo para cada combinação estudada anteriormente no ELU.

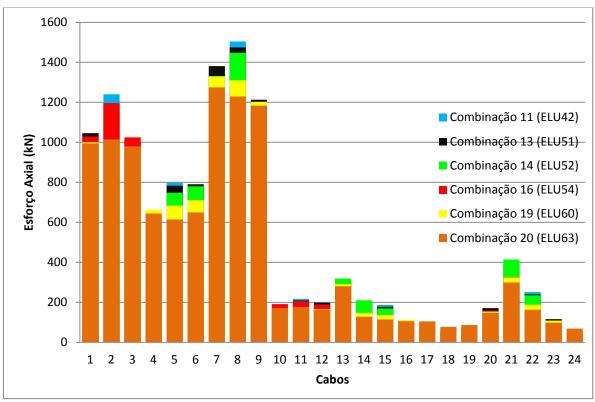


Figura 79 - Gráfico de barras com o esforço axial de cada cabo para as combinações mais critica (ELU).

A Tabela 10 apresenta os valores de esforço axial máximo em cada cabo, que são comparados com os valores resistentes na secção 4.5.2.

Tabela 10 - Valores máximos de esforco axial nos cabos (ELU).

Cabo	Combinação	Esforço Axial (kN)
1	13	1046
2	11	1240
3	16	1025
4	19	663
5	11	798
6	13	790
7	13	1381
8	11	1505
9	13	1213
10	16	191
11	11	218
12	11	201
13	14	319
14	14	210
15	11	187
16	19	112
17	20	104
18	20	77
19	20	86
20	13	171
21	14	414
22	11	251
23	13	116
24	20	69
•		

Relativamente ao tabuleiro da ponte, este encontra-se submetido a um momento fletor negativo máximo no apoio de -246 kNm e um momento fletor positivo a meio vão de 248 kNm. É importante relembrar que devido ao ensaio apresentado inicialmente faz-se uma redução do momento de inércia da secção na direção y para 1/3. Este facto leva a que a rigidez das longarinas (na direção vertical) seja baixa, logo os momentos (My) instalados também vão ter um valor reduzido. Também o valor máximo de esforço transverso nas longarinas é um pouco baixo, cerca de 82 kN.

Contudo, é possível verificar na combinação 12 que, em ELU, o esforço axial à tração máximo nas barras das longarinas atinge um valor de 2119 kN e de -1761kN à compressão.

Os momentos torsores provocados no tabuleiro são da ordem dos 40 kNm, logo opta-se por se desprezar estes esforços visto que se tratam de valores muito reduzidos.

No que diz respeito aos deslocamentos obtidos através das combinações no ELS, a Tabela 11 apresenta os valores dos deslocamentos aproximadamente a meio vão (Δ) e a razão entre o comprimento do vão e os deslocamentos (L/Δ) para cada combinação anteriormente referida.

Tabela 11 – Deslocamentos a meio vão para cada combinação no ELS.

Combinação	Δ (cm)	L/Δ
1	2.52	2222.22
2	-2.51	2231.08
3	-2.38	2352.94
4	3.38	1656.80
5	6.35	881.89
6	-10.48	534.35
7	-11.22	499.11
8	6.72	833.33
10	-4.63	1209.50

Segundo o EC3, o valor limite para a deformação de pavimentos é de L/250. Como neste caso o vão tem um comprimento de 56 m está-se perante um limite de 22.4 cm. Visto que o maior deslocamento é de 11.22 cm (combinação 7) pode-se constatar que mesmo para uma combinação rara este limite é respeitado.

4.4. MODOS DE VIBRAÇÃO

No dimensionamento de pontes pedonais é essencial considerar os condicionamentos associados à vibração das mesmas, mais concretamente, é necessária a realização de, não só uma análise estática, como também uma análise dinâmica da estrutura.

No âmbito deste trabalho não é realizada uma análise dinâmica da estrutura, sendo apenas apresentados os dez primeiros modos de vibração (Tabela 12) e comparados com a gama crítica de frequências naturais de pontes pedonais, f_i .

Tabela 12 – Modos de vibração da ponte.

Modo	Frequência (Hz)	Período (s)	Tipo de Deformação
1	0.72	1.39	Vertical
2	1.17	0.86	Vertical
3	2.19	0.46	Vertical
4	2.88	0.35	Vertical
5	4.51	0.22	Vertical
6	5.94	0.17	Lateral
7	6.06	0.16	Torsional
8	7.73	0.13	Vertical
9	8.72	0.11	Torsional
10	9.50	0.11	Vertical

É de notar que os modos de vibração são determinados a partir do modelo de cálculo descrito anteriormente, e tendo em conta as ação permanentes — peso próprio da estrutura e o pré-esforço nos cabos.

As gamas críticas de frequências naturais de pontes pedonais são [23]:

• Para vibrações verticais e longitudinais

$$1.25~Hz \leq f_i \leq 2.3~Hz$$

• Para vibrações laterais

$$0.5~Hz \le f_i \le 1.2~Hz$$

Analisando a Tabela 12, pode-se verificar que apenas o 3º modo de vibração se encontra dentro do intervalo pertencente às gamas críticas de frequências naturais. A deformada deste modo de vibração encontra-se na Figura 80.

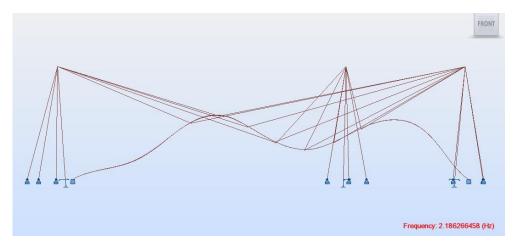


Figura 80 – Deformada do 3º modo de vibração.

Assim, é possível concluir que é indispensável uma futura análise dinâmica desta estrutura, ou até mesmo a aplicação de dispositivos de controlo de vibrações.

4.5. VERIFICAÇÃO DA CAPACIDADE RESISTENTE DOS ELEMENTOS ESTRUTURAIS

4.5.1. TABULEIRO

Como já referido, o tabuleiro adotado para a ponte em estudo é constituído por um conjunto de tubos circulares dobrados, unidos por uma resina epóxido. O enquadramento desta secção em normas e regras de boa prática torna-se impossível, visto que não foi possível encontrar nenhuma solução semelhante durante o decorrer deste trabalho. Como tal, é essencial realizar um estudo mais aprofundado para a determinação da resistência desta secção.

Em primeiro lugar, é necessário classificar a secção como qualquer outra secção transversal metálica. A classificação das secções transversais dos elementos estruturais consiste em avaliar a forma como a resistência e a capacidade de rotação de uma secção são alteradas pela ocorrência de fenómenos de encurvadura local.

Segundo o EC3 parte 1-1, as secções são classificadas dependendo da sua capacidade de rotação e capacidade para formar uma rótula plástica [24]:

- Classe 1 secções capazes de formar uma rótula plástica com capacidade de rotação superior à mínima exigida para a utilização de métodos de análise plástica;
- Classe 2 secções capazes de atingir o momento plástico, mas possuindo uma capacidade de rotação limitada;
- Classe 3 secções em que a fibra extrema mais comprimida pode atingir uma tensão igual à tensão de cedência, mas em que o momento plástico pode não ser atingido devido à sua encurvadura local:
- Classe 4 secções impedidas de atingir a tensão de cedência nas zonas mais comprimidas devido à encurvadura local.

Assim, as secções de classe 1 e 2 permitem o cálculo da capacidade resistente através de uma análise plástica, e as de classe 3 e 4 através de uma análise elástica.

Voltando ao caso da secção em estudo (Figura 23), admite-se que se trata de uma secção de Classe 1. Tal decisão justifica-se devido ao facto de se tratar de uma secção robusta e compacta, constituída apenas por várias secções fechadas. Considerando que a cola une os elementos de modo a permitir que trabalhem todos como uma só secção, é aceitável considerar a inexistência de encurvadura local.

Posto isto, é calculado o momento plástico¹⁷ da secção transversal do tabuleiro. É importante referir que como a secção em análise é simétrica, o eixo neutro em regime plástico é baricêntrico.

O diagrama de tenções normais correspondente à plastificação completa de uma secção simétrica retangular está representado na Figura 81.

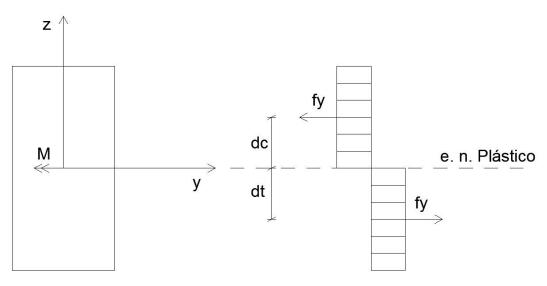


Figura 81 – Diagrama de tensões normais correspondente à plastificação completa.

A tenção de cedência do material é representada por f_y que no caso da secção em estudo toma o valor de 235 MPa. A distância do centro de gravidade das áreas comprimida e tracionada (A_c e A_t) em relação ao eixo neutro, é representado por d_c e d_t , respetivamente. Assim, o momento plástico é dado pela expressão (31).

$$M_{pl} = A_c f_y d_c + A_t f_y d_t \tag{31}$$

A secção da ponte em análise está submetida a momentos fletores e a esforços axiais em simultâneo. Este facto leva à necessidade de estudar a interação entre estes dois esforços. Contudo, a interação dos momentos fletores com os esforços transversos e momentos torsores não é analisada no âmbito deste trabalho, visto que tanto os esforços transversos, como os momentos torsores assumem valores reduzidos.

Esta análise teve por base a divisão da secção em duas zonas – uma que apenas resiste aos momentos fletores e outra aos esforços axiais.

.

Assim sendo, determinou-se o momento resistente, $M_{Rd,pl}$ e a resistência ao esforço axial, N_{Rd} da secção considerando diferentes casos, onde os dois casos extremos são:

- Toda a secção trabalha para apenas resistir ao momento fletor;
- Toda a secção trabalha para apenas resistir ao esforço axial.

A Figura 82 representa todos os casos considerados, sendo admitido que as zonas da secção inseridas no sombreado verde resistem apenas aos momentos fletores, e as zonas presentes no sombreado a vermelho apenas resistem aos esforços axiais.

Assim sendo, as figuras (a) e (g) da Figura 82 representam os dois casos extremos referidos anteriormente.

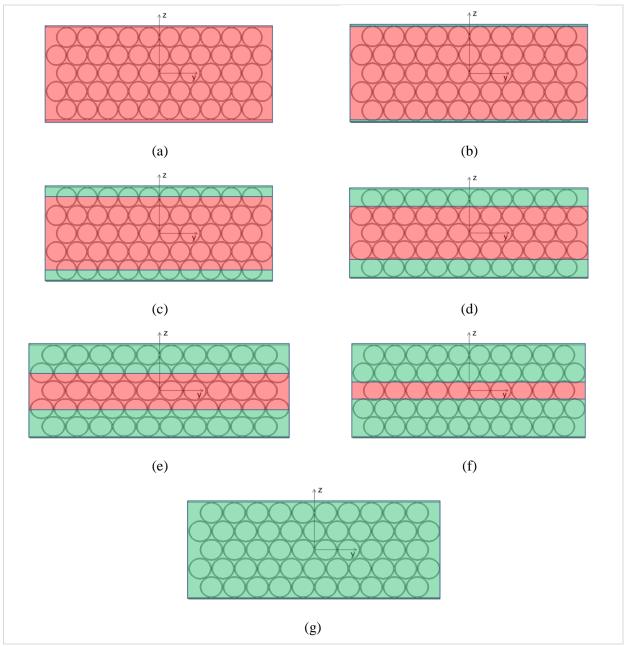


Figura 82 – Casos considerados na determinação da resistência da secção (longarina 1).

É necessário referir que esta análise é realizada para cada secção das três longarinas utilizadas no modelo de cálculo da estrutura e não para a secção total do tabuleiro. Desta forma, a comparação com os esforços apresentados na secção 4.3.5. torna-se mais fácil.

Um ponto importante, que é referido no capítulo 3, secção 3.3, do presente trabalho, é a característica isotrópica que o aço possui, ou seja, independentemente da direção considerada as propriedades do aço são sempre as mesmas. Por outras palavras, o aço comporta-se da mesma forma quando submetido è tração ou compressão. Contudo, quando uma peça é submetida a esforços de compressão pode estar sujeita a fenómenos de instabilidade. Este fenómeno caracteriza-se pela ocorrência de grandes deslocamentos transversais em elementos, geralmente esbeltos, sujeitos a esforços de compressão.

Posto isto, primeiramente é analisada a interação dos momentos fletores resistentes com os esforços axiais resistentes à compressão e tração, e posteriormente o esforço axial resistente à compressão é limitado através de uma análise do fenómeno de encurvadura.

Assim, para cada caso o $M_{Rd,pl}$ é determinado a partir da expressão (33), e o valor do esforço axial resistente, N_{Rd} , através da expressão (32).

$$N_{Rd} = \frac{A_{c/t} f_y}{\gamma_{M0}} \tag{32}$$

$$M_{Rd,pl} = \frac{A_c f_y d_c + A_t f_y d_t}{Y_{M0}} \tag{33}$$

A Tabela 13 apresenta os valores de N_{Rd} e $M_{Rd,pl}$ para as duas secções (secção constituída por tubos com espessura de parede de 3 mm e secção constituída por tubos com espessura de parede de 5 mm) que caracterizam as três longarinas.

Tabela 13 – Momento resistente e esforço axial de tração resistente para os dois tipos de secções das três longarinas.

	N _{Rd} (kN)				yannas.	M _{Rd,pl} (kNm)						
Caso	Secção D76.1E3 ¹⁸			Secção D76.1E3 ¹⁸ Secç		1E5 ¹⁹	Secç	ção D76	5.1E3	Secç	ção D76	5.1E5
J	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
(a)	10386	10369	10386	15615	15699	15615	0	0	0	0	0	0
(b)	8419	8581	8419	13648	13910	13648	339	308	339	339	308	339
(c)	6800	6800	6800	11023	11023	11023	590	584	590	746	756	746
(d)	5181	5019	5181	8399	8136	8399	766	778	766	1031	1069	1031
(e)	3400	3400	3400	5512	5512	5512	948	898	948	1299	1240	1299
(f)	1619	1781	1619	2625	2887	2625	1011	980	1011	1429	1398	1429
(g)	0	0	0	0	0	0	1071	1000	1071	1526	1429	1526

Como as longarinas 1 e 3 possuem a mesma secção e valores resistentes ligeiramente superiores aos valores da longarina 2, os esforços atuantes máximos apenas são comparados com os valores calculados para a longarina 2.

O gráfico da Figura 83 representa um ábaco de interação entre os momentos fletores resistentes e esforços axiais resistentes para a secção constituída por tubos circulares com espessura de parede de 5 mm e 3 mm.

¹⁸ Secção constituída por tubos circulares com 76.1 mm de diâmetro e 3 mm de espessura de parede.

¹⁹ Secção constituída por tubos circulares com 76.1 mm de diâmetro e 5 mm de espessura de parede.

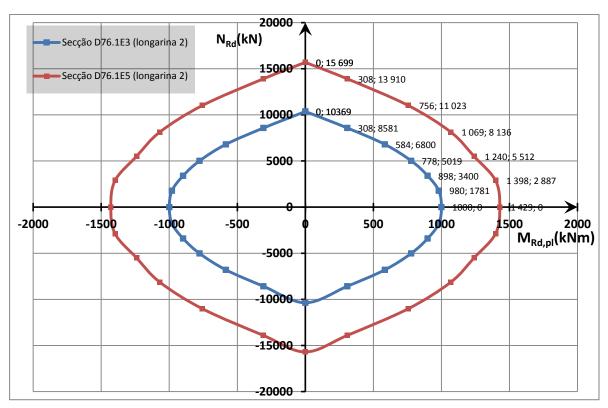


Figura 83 – Ábaco de interação entre os valores de $M_{Rd,pl}$ e N_{Rd} para as secções da longarina 2.

Os principais esforços atuantes nas longarinas, apresentados anteriormente, encontram-se na Tabela 14.

Tabela 14 – Principais momentos fletores e esforços axiais atuantes.

Combinação	N _{Ed} (kN)	M _{Ed} (kNm)
12	- 2119	- 73
12	1761	- 142
17	86	- 246
15	- 49	247

Observando a Tabela 14 pode-se verificar que não só estão representados os esforços máximos obtidos, como também os respetivos esforços concomitantes.

Assim sendo, com o intuito de comparar os esforços atuantes com a resistência da secção, são adicionados ao ábaco da Figura 83 os pontos representativos dos esforços apresentados na Tabela 14 (Figura 84).

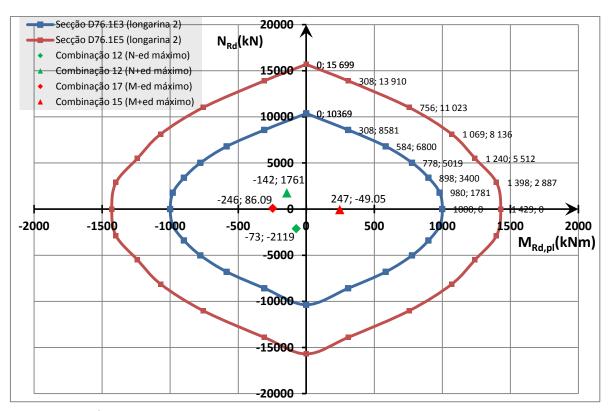


Figura 84 – Ábaco de interação entre os valores de $M_{Rd,pl}$ e N_{Rd} para as secções da longarina 2 e pontos representativos dos esforços atuantes.

Analisando a Figura 84 pode-se concluir que o tanto os momentos fletores como os esforços axiais resistentes são muito superiores aos esforços atuantes. Desta forma é correto afirmar que em ELU, relativamente aos presentes esforços atuantes, o tabuleiro da ponte encontra-se em segurança.

Contudo, também se verifica que a secção se encontra subdimensionada. Como a estrutura em estudo é muito flexível, a secção admitida é condicionada pela flexibilidade da estrutura. Por outras palavras, esta secção é necessária para aumentar a rigidez do tabuleiro, o que leva a uma grande discrepância entre os valores resistentes e os atuantes.

Relativamente à resistência da secção ao esforço transverso, é necessário, mais uma vez, realizar uma simplificação para a determinação deste valor. O valor de resistência plástica ao esforço transverso, segundo o EC3, é dado pela expressão (34).

$$V_{Rd,pl} = \frac{A_v(f_y/\sqrt{3})}{Y_{M0}} \tag{34}$$

Nesta expressão A_v representa a área de corte da secção, isto é, corresponde aproximadamente à área das partes da secção paralelas à direção do esforço transverso. Para a secção em estudo, admite-se que a área de corte é a área de corte de um só tubo circular multiplicada pelo número total de tubos presentes na secção.

Na Tabela 15 são apresentados os valores de $V_{Rd,pl}$ para as duas secções existentes no tabuleiro da ponte em estudo.

Tabela 15 – Valores do esforco transverso plástico resistente e áreas de corte.

Secção	A _v de 1 tubo (m ²)	A _v total (m ²)	V _{Rd,pl} (kN)
D76.1E3	0.000460768	0.072340576	9815
D76.1E5	0.000751193	0.117937301	16001

Como se pode verificar, o esforço transverso resistente é muito superior ao esforço transverso máximo atuante (apresentado na Combinação 18, 82 kN).

Voltando aos esforços axiais, como já referido, é necessário determinar a resistência da secção quando submetida a esforços axiais de compressão simples tendo em conta o fenómeno de encurvadura.

As zonas do tabuleiro onde este fenómeno pode ocorrer são as zonas dos acessos. Os acessos à ponte são constituídos por troços retos com uma inclinação de 32º e 9.434 m de comprimento (Figura 16 do Capítulo 2.3.1).

Assim sendo, procede-se a uma verificação segundo o EC3 parte 1-1 da secção D76.1E5 da longarina 2 (possui uma área de aço ligeiramente inferior às restantes).

Inicialmente é necessário calcular o valor da carga crítica, N_{cr} , dada pela expressão (35).

$$N_{cr} = \frac{\pi^2 E I_y}{L_\rho^2} \tag{35}$$

O valor do módulo de elasticidade, E, é de 210 GPa e a inércia da secção na direção y, I_y , tem o valor de 2.716×10-4 m⁴ (valor apresentado na Tabela 2). O valor do comprimento de encurvadura, L_e , é calculado através da expressão (36). Esta expressão resulta do pressuposto que a zona em estudo pode ser simplificada pelo esquema estrutural representado na Figura 85.

$$L_{e} = 0.7L \tag{36}$$

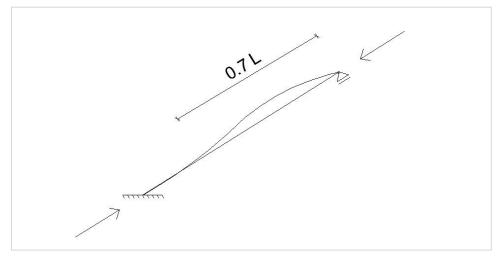


Figura 85 - Comprimento de encurvadura.

Posto isto, como a barra em análise tem um comprimento, L, de 9.434 m, resulta um valor de comprimento de encurvadura de 6.604 m.

E desta forma, resulta um valor de carga crítica de 12906.982 kN.

Em seguida, o coeficiente de esbelteza adimensional, $\bar{\lambda}$, definido pela expressão (37), é calculado a partir do valor da área total de aço da secção transversal, A_x (apresentado na Tabela 2).

$$\bar{\lambda} = \sqrt{\frac{A_x f_y}{N_{cr}}} \tag{37}$$

Da expressão apresentada resulta um coeficiente de esbelteza de 1.103.

O passo seguinte é determinar o valor do fator de redução para o modo de encurvadura, χ . Este valor é dado pela expressão (38).

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \bar{\lambda}^2}} \tag{38}$$

Segundo o EC3, da expressão (39) resulta o valor de ϕ .

$$\phi = 0.5 \left[1 + \alpha (\bar{\lambda} - 0.2) + \bar{\lambda}^2 \right] \tag{39}$$

O valor do fator de imperfeição, α , depende da curva de encurvadura adotada. A escolha da curva depende da geometria da secção transversal, da classe do aço, do processo de fabrico e do plano de encurvadura condicionante. A Figura 86 representa uma tabela do EC3 que descreve as condições de seleção da curva de encurvadura.

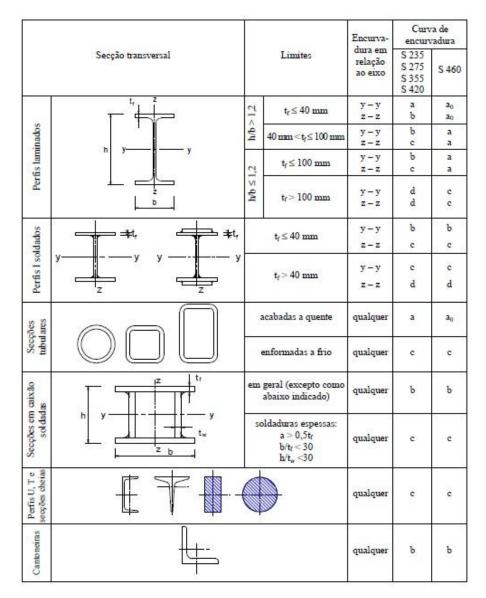


Figura 86 – Seleção da curva de encurvadura. [16]

Como já referido, a secção em estudo abrange grandes dificuldades quando se trata do seguimento de normas. Sendo assim, como a secção é constituída por muitas secções tubulares de pequena dimensão, é considerado que se trata de uma secção sólida, isto é, da curva c.

Posto isto, segundo a tabela do EC3 apresentada na Figura 87 do EC3, o valor de α é de 0.49.

Curva de encurvadura	\mathbf{a}_0	a	b	c	d
Factor de imperfeição α	0,13	0,21	0,34	0,49	0,76

Figura 87 – Tabela dos fatores de imperfeição para as curvas de encurvadura.[16]

Assim sendo, da expressão (39) resulta um ϕ com valor de 1.329. Também já estão calculados todos os parâmetros necessários para determinar o fator de redução através da expressão (38), ou seja, o valor de χ é de 0.483.

Finalmente, é calculado o valor de esforço axial resistente à compressão, $N_{Rd,c}$, através da expressão (40).

$$N_{Rd,c} = \frac{\chi A_x f_y}{\gamma_{M1}}$$

$$N_{Rd,c} = \frac{0.483 \times 668.023 \times 10^{-4} \times 235000}{1}$$
(40)

Como já referido, o esforço axial à compressão máximo é de 2119 kN, ou seja, é muito menor do que o valor de esforço axial resistente. Assim, pode-se concluir que a estrutura do tabuleiro verifica a segurança relativamente ao fenómeno de encurvadura.

 $N_{Rd,c} = 7578 \text{ kN}$

Os elementos utilizados para a amarração dos cabos e que se encontram sob o tabuleiro – perfis de tubulares quadrados e chapa central – são verificados para o ELU através do cálculo automático existente no *Robot*. É importante referir que este cálculo automático tem em conta as normas do EC3.

Como se pode verificar na Figura 88, todos os perfis tubulares quadrados verificam o ELU com sucesso.

Figura 88 – Verificação ao ELU dos perfis utilizados para a amarração dos cabos através do programa de cálculo Robot.

Também os elementos de barra que representam a chapa central onde os três cabos centrais são amarrados são verificados através do cálculo automático realizado pelo *Robot* (Figura 89).

Figura 89 – Verificação ao ELU da chapa central sob o tabuleiro através do programa de cálculo Robot.

Pode-se verificar que estes elementos verificam o ELU com sucesso.

4.5.2. CABOS

Os esforços axiais máximos a que os cabos 1 a 9 (cabos que se encontram amarrados ao solo, a montante dos mastros) e os cabos 10 a 24 estão sujeitos são de 1505 kN e 414 kN, respetivamente. A combinação responsável pelo esforço axial máximo de 1505 kN no cabo 8 é a combinação 11 onde atua a sobrecarga vertical como ação de base e o vento na direção vertical sentido descendente.

Os cabos escolhidos são da empresa *Redaelli* e são do tipo FCL²⁰. A Figura 90 representa a tabela presente no catálogo dos cabos, onde se pode verificar as características dos cabos disponíveis.

-

²⁰ Full locked Coil Strands

Product	d	F _{u,k} ⁽⁹⁾	F _{R,d} ^{eq}	A	EA	Mass
code	(mm)	(kN)	(kN)	(mm²)	(MN)	(kg/m)
FLC 16	16	250	152	170	28.1	1.4
FLC 20	20	395	239	266	43.9	2.2
FLC 24	24	570	345	383	63.2	3.2
FLC 28	28	775	470	521	86.0	4.3
FLC 32	32	1015	615	681	112	5.7
FLC 36	36	1285	779	862	142	7.2
FLC 40	40	1605	973	1077	178	9.0
FLC 44	44	1945	1179	1303	215	10.8
FLC 48	48	2315	1403	1551	256	12.9
FLC 52	52	2750	1667	1841	304	15.3
FLC 56	56	3190	1933	2136	352	17.8
FLC 60	60	3660	2218	2452	405	20.4
FLC 64	64	4165	2524	2789	460	23.2
FLC 68	68	4700	2848	3149	513	26.2
FLC 72	72	5210	3158	3530	575	29.4
FLC 76	76	5790	3509	3933	641	32.7
FLC 80	80	6405	3882	4358	710	36.3
FLC 84	84	7045	4270	4805	783	40.0
FLC 88	88	7720	4679	5274	860	43.9
FLC 92	92	8430	5109	5764	940	48.0
FLC 96	96	9165	5555	6276	1023	52.2
FLC 100	100	10050	6091	6890	1123	57.3
FLC 104	104	10860	6582	7452	1215	62.0
FLC 108	108	11700	7091	8037	1310	66.9
FLC 112	112	12720	7709	8744	1425	72.8
FLC 116	116	13635	8264	9379	1529	78.0
FLC 120	120	14585	8839	10037	1636	83.5
FLC 124	124	15565	9433	10718	1747	89.2
FLC 128	128	16765	10161	11551	1883	96.1
FLC 132	132	17820	10800	12285	1966	102.2
FLC 136	136	18910	11461	13040	2086	108.5
FLC 140	140	20260	12279	13976	2236	116.3
FLC 144	144	21425	12985	14786	2366	123.0

Figura 90 – Características dos cabos $\textit{Redaelil}^{21}$ do tipo FLC.

Para os cabos de 1 a 9 são escolhidos cabos do tipo FLC 52. Contudo, como os cabos de 10 a 24 possuem esforços axiais máximos inferiores são selecionados os cabos FLC 40.

A Tabela 16 apresenta, de forma mais específica, as características dos cabos escolhidos.

85

²¹ O catálogo completo encontra-se no Anexo A4.

Tabela 16 - Características dos cabos escolhidos.

Cabo	Diâmetro Nominal (mm)	F _{u,k} (kN)	σ _{u,k} (MPa)	Área (m²)	E (GPa)	Peso Volúmico (kN/m3)
FLC52	52	2750	1490	1.84×10 ⁻³	165	83
FLC40	40	1605	1490	1.08×10 ⁻³	165	83

Pode-se verificar que as capacidades resistentes dos cabos escolhidos são muito superiores comparando com os respetivos esforços atuantes, isto é, a capacidade mobilizada dos cabos é limitada. Esta escolha tem o intuito de garantir que os cabos possuam um bom comportamento à fadiga.

Assim, os cabos FLC52 e FLC40 encontram-se com uma capacidade resistente mobilizada de 55% e 26%, respetivamente.

4.5.3. MASTROS

Tal como os elementos de amarração dos cabos analisados anteriormente, a segurança dos mastros é verificada através do cálculo automático do *Robot*.

Assim, a Figura 91 demonstra que os mastros verificam o ELU.

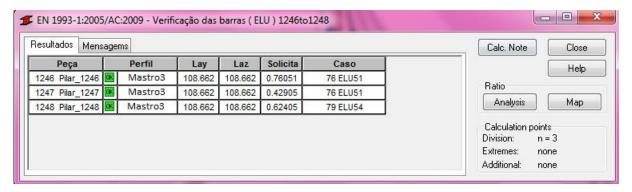


Figura 91 – Verificação dos mastros ao ELU através do programa de cálculo *Robot*.

É importante referir que o cálculo automático do *Robot* inclui uma análise ao fenómeno de encurvadura. Assim, é possível encontrar uma informação mais detalhada desta verificação na folha de cálculo fornecida pelo programa, que se encontra no Anexo A8.

5 MODELO DE ANÁLISE MICROMECÂNICA

5.1. INTRODUÇÃO E OBJETIVOS

Como já referido no decorrer deste trabalho, a solução escolhida para secção do tabuleiro traz algumas dificuldades no estudo do seu comportamento e na análise da sua resistência.

Depois de estudada a resistência da secção, tendo em conta o material aço e a sua geometria, é necessário verificar se a cola resiste aos esforços atuantes. Para tal, é realizado em modelo constituído por elementos finitos sólidos, de vinte nós, através do programa *Femix*.

Como este modelo de cálculo, além de possuir elementos finitos que representam o aço, também possui elementos finitos com características semelhantes às da cola, é possível, não só estudar as tensões instaladas na cola, como também, comparar o comportamento do modelo com as conclusões retiradas do ensaio descrito inicialmente.

Desta forma, este modelo de micromecânica tem como principais objetivos analisar o comportamento do conjunto aço/cola e determinar as tensões instaladas no adesivo, para finalmente as comparar com a resistência do mesmo.

5.2. DESCRIÇÃO DO MODELO

5.2.1. DEFINIÇÃO GEOMÉTRICA

O modelo de cálculo não representa toda a secção do tabuleiro, mas apenas uma parte que se repete ao longo da largura de 2.5 m da secção.

Em primeiro lugar é necessário referir qual o referencial utilizado e a sua origem relativamente ao modelo em causa. Na Figura 92 está representada a secção do modelo de cálculo e o respetivo referencial.

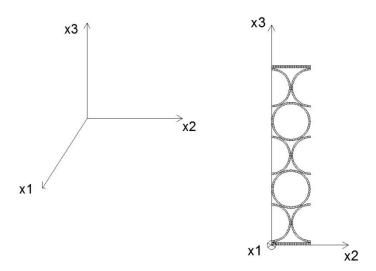


Figura 92 – Secção do modelo e referencial considerado.

São consideradas as seguintes características na definição dos elementos finitos sólidos que constituem o modelo:

- Cada cola é definida por dois elementos finitos sólidos, exceto as colas que se encontram em contacto com as chapas, que são definidas por um elemento finito, cada;
- A espessura mínima das colas, é de 0.001 m;
- Cada coroa circular está dividida em 72 partes, mais concretamente, em cada 5°, relativamente ao centro da circunferência, existe um elemento finito sólido (Figura 93);
- Todos os elementos finitos possuem um comprimento de 0.010 m na direção do eixo x₁.

Relativamente às características dos materiais, os elementos finitos sólidos que representam a cola possuem as seguintes características (definidas no capítulo 3 do presente trabalho):

- Módulo de Young de 1.2 GPa;
- Coeficiente de *Poisson* de 0.33;
- O peso próprio é desprezado.

As características dos elementos finitos sólidos que representam o aço são:

- Módulo de Young de 210 GPa;
- Coeficiente de *Poisson* de 0.3;
- O peso próprio é desprezado.

A Figura 93 representa a secção paralela ao plano definido por x₂ e x₃, no modelo de cálculo.

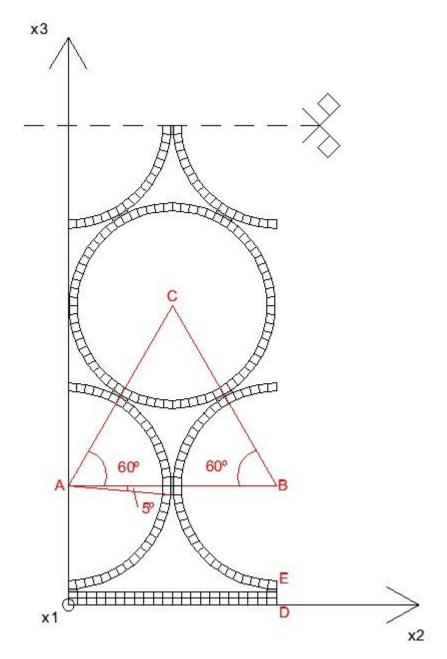


Figura 93 – Esquema da do modelo no plano definido por x₃ e x₂.

Pode-se observar que os elementos de cola encontram-se sombreados a cinzento, ou seja, é considerado um total de quinze colas – quatro horizontais em contacto com as chapas, três verticais e oito inclinadas.

É importante referir que a espessura de parede dos tubos considerada é de 3 mm, visto que se trata da secção menos resistente.

Na Figura 93 pode-se verificar que três tubos associados definem um triângulo equilátero (ABC) com os respetivos vértices no centro de cada tubo, e lados com comprimento de 0.0771 m. Este valor provém da soma do diâmetro de um tubo, 0.0761 m, com a espessura de uma cola, 0.001 m.

O comprimento do segmento \overline{DE} é de 0.009 m, ou seja, é a soma da espessura da chapa (0.005 m) com a espessura de uma cola (0.001 m), e com a espessura da parede de um tubo (0.003 m).

Assim, o comprimento total do modelo, em relação ao eixo x_3 , é de 0.3552 m, e o comprimento em relação ao eixo x_2 é de 0.0771 m.

Em relação à profundidade do modelo, cada elemento finito sólido apresentado na Figura 93 é repetido 100 vezes ao longo de x_1 . Assim, como cada elemento finito possui um comprimento em relação a x_1 de 0.010 m, define-se um comprimento total de 1 m para o modelo de cálculo, em relação a x_1 (Figura 94).

Figura 94 – Visualização tridimensional do modelo de cálculo.

O modelo de cálculo do *Femix* possui assim um total de 47400 elementos finitos sólidos e 311321 nós, e o tempo de cálculo de uma análise linear foi de cerca de 4 horas num computador pessoal.

5.2.2. APOIOS CONSIDERADOS

O modelo de cálculo pretende simular um troço do tabuleiro que se encontra submetido à flexão. Como tal, é considerado que este se encontra encastrado numa extremidade, funcionando como uma consola impedida de se deslocar na direção segundo x₂.

Desta forma, todos os nós dos elementos finitos sólidos que intersetam o plano representado a cor azul na Figura 95 encontram-se com as direções x_1 , x_2 e x_3 impedidas de se deslocar.

Figura 95 – Visualização tridimensional do modelo de cálculo e plano onde se intersetam os nós com apoios.

Por outro lado, todos os nós que intersetam os planos representados a cor vermelha na Figura 96, estão impedidos de se deslocar na direção x_2 . Assim, é possível reproduzir o comportamento de um troço que se encontra, na zona interior do tabuleiro.

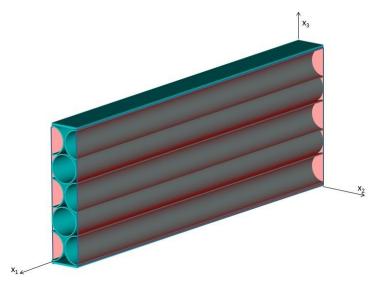


Figura 96 – Visualização tridimensional do modelo de cálculo e planos onde se intersetam os nós com apoios.

5.2.3. CARGAS APLICADAS

Relativamente às cargas aplicadas, visto que se trata de uma análise linear, e como o tempo de cálculo do programa é muito extenso, apenas é considerado um caso de carga. Posto isto, é colocada uma carga distribuída, com a direção de x_3 , nos nós presentes no segmento de reta \overline{FG} (Figura 97), cuja resultante é de -100 kN.

Figura 97 – Visualização tridimensional do modelo de cálculo e zona de aplicação da carga.

5.3. ANÁLISE E DISCUSSÃO DOS RESULTADOS

5.3.1. ANÁLISE DOS DESLOCAMENTOS

Em primeiro lugar é verificada a deformada da estrutura, cujo resultado encontra-se na Figura 98.

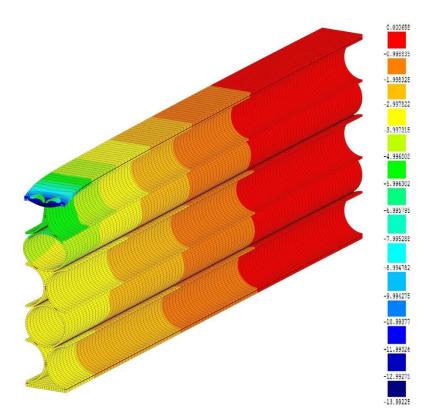


Figura 98 – Deformada do modelo de elementos finitos sólidos.

Pode-se verificar que a carga concentrada na extremidade provoca uma deformada excessiva, onde os deslocamentos da chapa superior são maiores do que os deslocamentos da primeira linha de tubos. Este fenómeno deve-se ao facto, de a carga aplicada ser demasiado elevada numa zona extrema da chapa – é admitido um carregamento de 100 kN. Na realidade, o valor da carga não é relevante, visto que se trata de uma análise linear, além disso esta deformada local não afeta o comportamento global do modelo.

Todos os resultados são analisados tendo em conta a relação entre o modelo de elementos finitos sólidos e o modelo de barras global da ponte do *Robot*, estudado anteriormente.

Assim, a zona da extremidade onde se encontra a carga e a zona da extremidade encastrada são ignoradas em termos de resultados, visto que são zonas onde os valores resultantes estão diretamente influenciados pela carga e pelos nós encastrados, respetivamente. Contudo, a parte central do modelo trata-se da zona menos afetada, e com comportamento semelhante ao de um troço do tabuleiro.

Em termos quantitativos, compara-se o deslocamento vertical no nó central da base inferior do modelo de *Femix*, com um modelo, no *Robot*, constituído por um elemento de barra com a extremidade encastrada, onde são impostas apenas as características geométricas, e só se considera a existência do material aço (Tabela 17).

Tabela 17 - Comparação de resultados entre o modelo Femix e Robot.

	Modelo Femix	Modelo Robot
Carga na extremidade (kN)	100	100
Deslocamento (m)	3.2×10^{-3}	1.8 × 10 ⁻³
Rigidez (kN/m)	31250	55095

Pode-se verificar, que o modelo de barra do *Robot* é 1.76 vezes mais rígido, do que o modelo de elementos finitos sólidos realizado no *Femix*. Na secção 4.1.4 deste trabalho, onde são apresentados os resultados do ensaio em laboratório, e comparados com os resultados do modelo de barras no *Robot* do provete, verifica-se que este último é 2.85 vezes mais rígido relativamente ao provete real ensaiado. É necessário relembrar, que esta conclusão levou à redução do momento de inercia na direção y, de todas as secções consideradas no modelo de barras global da ponte utilizado no estudo da estrutura, através de um coeficiente de 0.35.

Desta forma, pode-se concluir, que o ensaio demonstra que a cola provoca um decréscimo de rigidez de 65% na estrutura. Contudo, a presente comparação apresentada na Tabela 17, demonstra que o decréscimo de rigidez devido à presença da cola é de, aproximadamente, 43%.

Assim, o modelo de barras global da ponte e consequentemente, os esforços obtidos nos capítulos anteriores, têm em consideração o extremo mais conservativo deste intervalo, ou seja, a rigidez do tabuleiro com um decréscimo de 65%.

5.3.2. ANÁLISE DE TENSÕES

Em primeiro lugar são analisadas as tensões a que os elementos de aço ficam sujeitos quando a peça é solicitada pela carga de 100 kN. Na Figura 99, encontra-se um mapa das tensões σ_1 instaladas no modelo.

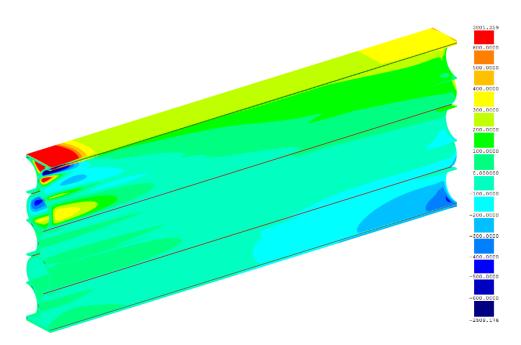


Figura 99 – Mapa de tensões σ_1 nos elementos de aço (escala em MPa).

Desprezando a zona onde o carregamento é aplicado e a zona onde os elementos estão muito próximos do encastramento, pode-se verificar que o aço encontra-se com uma tensão σ_1 máxima de aproximadamente 400 MPa (zona do mapa com a cor amarela).

Relativamente aos elementos de cola é necessário ter em atenção as tensões de tangenciais. Na Figura 100 está representado um mapa de tensões tangenciais, apenas nos elementos que definem as colas (tensões instaladas nas faces, perpendiculares ao eixo x_3 e orientadas segundo o eixo x_1 , dos elementos finitos sólidos, τ_{31}).

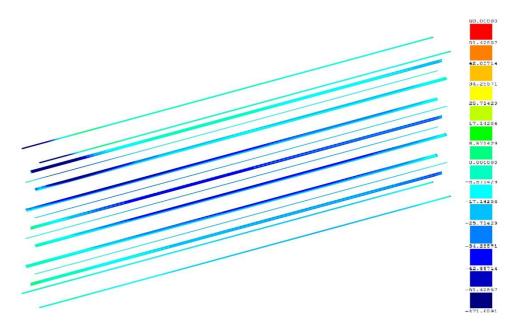


Figura 100 - Mapa de tensões tangenciais τ_{31} nos elementos de cola (escala em MPa).

Pode-se verificar que as colas que encontram-se inclinadas relativamente aos eixos x_2 e x_3 , possuem tensões tangenciais mais elevadas comparativamente às restantes, sendo estas as que mais contribuem para a resistência da secção. Posto isto, verifica-se uma tensão de tangencial máxima de, aproximadamente, 23.5 MPa, para o caso de carga em estudo.

Antes de mais, é necessário proceder à conversão dos resultados aqui apresentados, para o caso estudado nos capítulos anteriores, mais concretamente, é necessário realizar uma correlação entre o modelo de cálculo do *Femix* e o modelo de barras do *Robot* da estrutura da ponte, a partir do qual foram calculados os esforços.

Posto isto, em primeiro lugar, é necessário ter em atenção que a carga de 100 kN, aplicada no modelo do *Femix*, provoca um momento fletor máximo de 100 kNm. Contudo, o momento fletor máximo calculado no modelo do *Robot* da estrutura global da ponte é de 248 kNm na combinação 15 (ELU) presente na secção 4.3.4 deste trabalho (por uma questão conservativa, admite-se um momento fletor de 250 kNm). Como as dimensões dos elementos dos modelos de cálculo diferem, é necessário dividir cada um dos momentos instalados pela respetiva largura do elemento. Assim, como o modelo do *Femix* possui uma largura de 0.0771 m está-se perante um momento fletor de 1297 kNm/m; o momento fletor do modelo de barras do *Robot* corresponde a uma longarina que possui uma largura de, aproximadamente 0.83 m, ou seja, está-se perante um valor de 301 kNm/m.

Desta forma, obtém-se uma relação entre o modelo do *Robot* e o modelo do *Femix* de, aproximadamente, 0.23.

Finalmente, é possível concluir que a tensão de tangencial máxima presente nos elementos de cola é de, aproximadamente, 5405 kPa.

Relativamente às tensões máximas de tração e compressão na cola, obtém-se os valores de 575 kPa e 1150 kPa, respetivamente.

As tensões limites características da cola em uso - Araldite AW 106 com endurecedor do tipo HV 933 U – apresentadas na secção 3.2 deste trabalho, são:

- Tensão limite de elasticidade à compressão (σ_c) de 45.3 MPa;
- Tensão limite de elasticidade ao corte (σ_v) entre 14 17 MPa;
- Tensão limite de elasticidade à tração (σ_t) de 22.3 MPa.

Visto que não existem normas, nem regras, a seguir relativamente a este material, é necessário admitir um coeficiente parcial para o ELU. Posto isto, é admitido um coeficiente de 1.5, igual ao valor utilizado no betão, designado por Y_A .

É necessário referir, que as propriedades resistentes da Araldite variam consoante a temperatura, humidade e fadiga, o que leva a que a tensão de elasticidade ao corte varie. Considerando que as condições futuras não serão ideais, admite-se que a tensão limite de elasticidade ao corte é de 14 MPa.

Na Tabela 18, estão apresentados os valores das tensões resistentes e respetivos esforços atuantes.

Tabela 18 – Valores das tensões resistentes na cola e respetivos esforços atuantes.

	Tensão limite de elasticidade (kPa)	Tensão Resistente ²² (kPa)	Tensão atuante ²³ (kPa)
Tensão à compressão	45300	30200	1150
Tensão ao corte	14000	9330	5405
Tensão à tração	22300	14870	575

Através da Tabela 18 pode-se verificar que os elementos de cola, na combinação mais crítica no ELU, encontram-se em segurança.

Contudo, é importante verificar qual a tensão tangencial nos elementos de cola quando os elementos de aço estão submetidos à tensão máxima de 203 MPa (resultante da combinação 20, no ELU). Posto isto, como se está perante uma análise linear, facilmente se conclui que quando o aço atinge esta tensão, a cola está submetida a uma tensão tangencial de 11.8 MPa. Apesar de este valor ser superior ao valor da tensão resistente admitida, é inferior ao valor da tensão limite de elasticidade da cola (14 MPa).

²² Valor de cálculo.

²³ Valor de cálculo.

6 PROCESSO CONSTRUTIVO

O processo construtivo de uma ponte é um ponto a ter em consideração desde o estudo e conceção da obra. É essencial que haja um estudo para que todos os elementos estruturais e não estruturais sejam exequíveis.

Todavia, é de salientar que este processo é planeado tendo em conta, não só um fator económico, através de uma boa gestão de recursos, como também é necessário que seja um processo simples e eficaz.

No caso em estudo, o processo construtivo é definido deste o aparecimento das primeiras ideias sobre a conceção da ponte.

Posto isto, como o tabuleiro é constituído por cinco camadas de tubos (três com 31 tubos e duas com 32), a sua construção é realizada em várias fases.

Para a realização da primeira camada é necessário fazer uma piquetagem do perfil longitudinal da ponte (em alçado) num terreno com uma área suficiente para abranger as dimensões da estrutura. Cada ponto da piquetagem é definido através de marcos metálicos dois a dois, com uma distância entre si ligeiramente superior ao diâmetro externo de um tubo (76.1 mm) mais a espessura da chapa de aço superior do tabuleiro (5 mm) (Figura 101 e Figura 102).

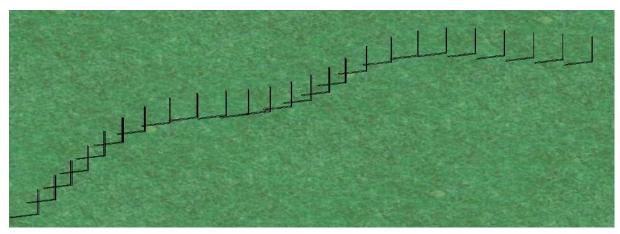


Figura 101 – Localização dos marcos metálicos que definem o perfil longitudinal da ponte.

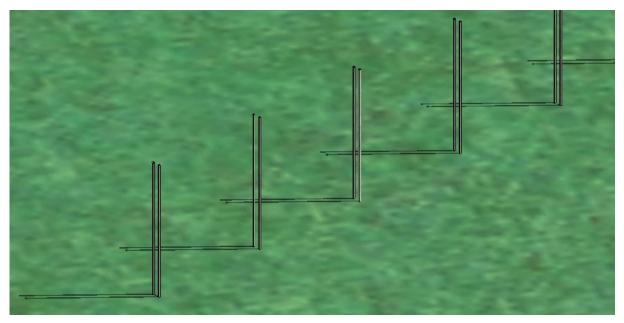


Figura 102 – Pares de marcos metálicos.

É importante referir que estes marcos funcionam como um jig^{24} durante a construção da primeira camada. A primeira fila de tubos é colocada e aplica-se a cola através de um sistema de bombagem pneumático²⁵ que mistura os dois componentes constituintes da mesma. Posteriormente coloca-se a segunda fila. Repete-se o processo, até que a primeira camada de tubos esteja completa (Figura 103 e Figura 104).

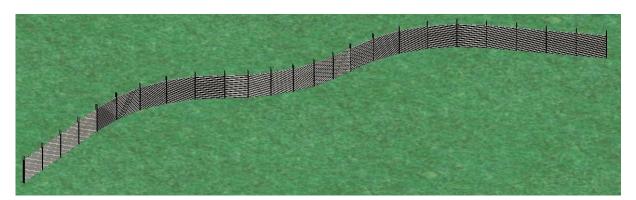


Figura 103 – Colagem da primeira camada de tubos.

_

²⁴ Estrutura feita à medida usada para controlar a localização e o movimento de outra estrutura. Permite a fixação da peça durante a sua concretização.

²⁵ O nome do equipamento é *Loctite DuraPump Pneumatic Meter Mix System*.

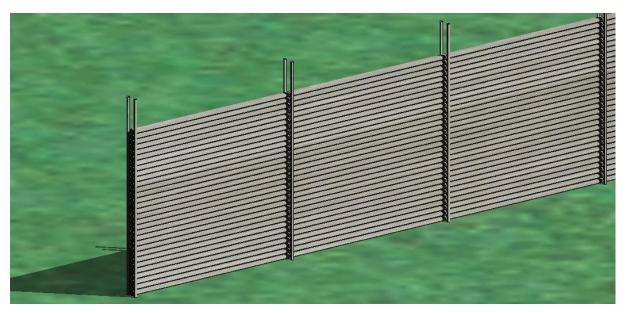


Figura 104 – Esquema pormenorizado da primeira camada de tubos.

Como o tempo de cura mínimo da cola é de, aproximadamente, 15 horas a uma temperatura de 20°C (quanto maior a temperatura, menor o tempo necessário de cura) cada camada construída fica em repouso de um dia para o outro. Nesta fase também as chapas superiores são coladas após a execução total da primeira camada.

É necessário referir que os tubos de aço precisam de um tratamento prévio (antes da aplicação da cola), Concretamente, para que a junção dos tubos não seja prejudicada é indispensável remover as zonas afetadas pela oxidação através de uma lixa. Em seguida, é necessário desengordar o material com acetona e finalmente a aplicação de uma tinta primária.

Após a secagem, a primeira camada do tabuleiro é rodada 90° através do auxílio de uma grua, ficando com as zonas mais elevadas apoiadas sobre cimbres, (Figura 105, Figura 106 e Figura 107).

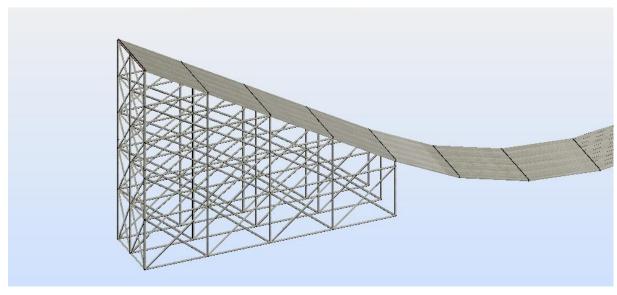


Figura 105 – Esquema da zona de acesso à ponte apoiada sobre um cimbre.

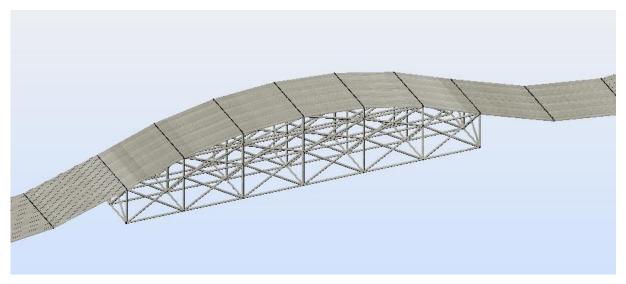


Figura 106 – Esquema da zona central do tabuleiro apoiada sobre um cimbre.

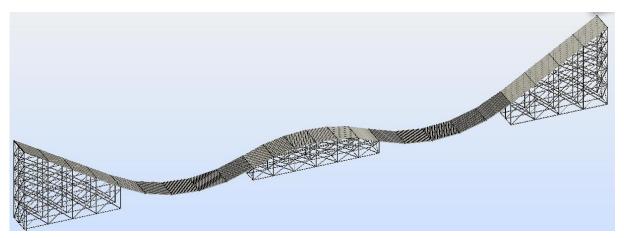


Figura 107 – Esquema de todo o tabuleiro apoiado sobre cimbres.

Em seguida é aplicada a cola para fixar a segunda camada. Passado 24 horas, volta-se a repetir o mesmo processo até as cinco camadas constituintes do tabuleiro estarem coladas (Figura 108).

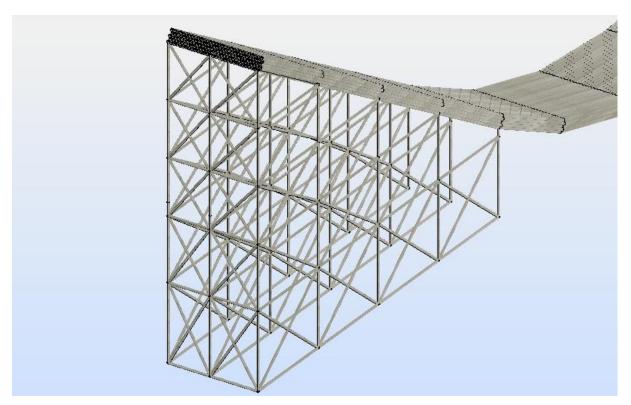


Figura 108 – Esquema das cinco camadas de tubos sobre o cimbre.

Posteriormente é colada a segunda chapa de aço, previamente dobrada. Nesta fase do processo também são soldados os elementos de amarração dos cabos — chapa no cento do tabuleiro e perfis tubulares quadrados.

A fase seguinte consiste na colocação do tabuleiro nas sapatas de betão através de uma grua. É necessário referir, que a escavação da zona das sapatas é realizada a par do processo descrito, com o intuito de fixar o tabuleiro logo após a colocação do betão no interior das cofragens.

Os mastros pré-fabricados são executados durante o decorrer deste processo.

Finalmente procede-se à fixação dos cabos e aplicação do pré-esforço nos mesmos.

O passo seguinte é a colocação dos guarda-corpos, tintas protetoras e restantes acabamentos.

É de notar que a zona do Estádio Universitário possui uma área suficientemente grande para abarcar todo este processo e construção de estaleiros.

Relativamente ao tempo de construção, devido à rápida aplicação e secagem da cola, é possível afirmar que a construção desta obra poderá demorar, aproximadamente, duas a três semanas.

7 ESTIMATIVA ORÇAMENTAL

É possível estimar um custo de construção da obra em estudo com base nos custos diretos relativos às quantidades de materiais. A Tabela 19 descrimina os custos referentes aos principais materiais.

Tabela 19 – Estimativa orçamental da obra.

Trabalho	Item	Quantidade	Unidade	Custo Unitário	Custo Parcial
Fundações	Maciços de betão armado	18	m ³	250.00 €	4 500.00 €
Mastros pré- fabricados		8960	kg	3.50 €	31 358.33 €
Cabos -	FLC¢40	4689	kg	15.00 €	70 337.19 €
Cabos -	FLC¢52	2249	kg	15.00 €	33 732.61 €
	Tubos circulares	94878	kg	3.50 €	332 073.21 €
Estruturas metálicas do	Tubos quadrangulares	224	kg	3.50 €	783.04 €
tabuleiro	Chapas	5939	kg	3.50 €	20 786.25 €
	Chapa central	294	kg	3.50 €	1 030.31 €
Cola	Araldite	1536	kg	15.00 €	23 038.52 €
Guarda- corpos		1078	kg	2.00 €	2 155.81 €
				Total	519 795.27 €
Infraestruturas elétricas e acabamentos gerais (20% do total)					103 959.05 €
				Total	623 754.32 €

Pode-se concluir que a estimativa do custo da obra é de aproximadamente 624 000 € (seiscentos e vinte e quatro mil euros), valor que será depois acrescido do IVA²⁶ à taxa legal em vigor.

Também é realizado o cálculo do custo do tabuleiro da ponte por m^2 , onde se obtém um valor de aproximadamente 2300 €/ m^2 . O custo do tabuleiro de uma ponte metálica corrente ronda valores da ordem de 700€/ m^2 a 1000 €/ m^2 , contudo soluções especiais, podem chegar a custos na ordem dos 3000 €/ m^2 .

Posto isto, pode-se admitir que o custo unitário do tabuleiro da ponte em estudo é razoável, visto que se trata de uma solução especial e invulgar.

.

²⁶ Imposto sobre o Valor Acrescentado.

CONCLUSÕES E DESENVOLVIMENTOS FUTUROS

Após a conclusão deste trabalho, é necessário referir de forma sucinta, não só as limitações deste estudo, como também explicitar as possibilidades de desenvolvimentos futuros.

É de notar que a presente dissertação desenvolve-se, não só como um projeto, mas também como uma investigação de uma solução simples e inovadora. Este facto tem como consequência a abdicação do estudo de certos aspetos comuns num projeto de uma ponte pedonal, tais como, o dimensionamento de fundações e um estudo do comportamento dinâmico da estrutura.

A realização de mais ensaios também é essencial para uma melhor análise do comportamento do adesivo estrutural utilizado, nomeadamente, ensaios de longa duração para o estudo do comportamento dos elementos estruturais relativamente à fadiga.

Na realidade, quando se está perante um projeto invulgar é essencial que a visualização e o estudo do problema sejam realizados tendo em conta diferentes perspetivas e possibilidades de solução, algo que requer muito tempo, condição limitada na realização deste trabalho.

Posto isto, ao longo deste estudo são realizados dois modelos de cálculo principais – a estrutura global da ponte num modelo de barras no *Robot* e o modelo de micromecânica no *Femix*. Ambos os modelos de cálculo, e o ensaio realizado, têm como objetivo a compreensão do comportamento e funcionamento da ponte depois de construída.

A Figura 109 apresenta um esquema resumido, que demonstra as conclusões e comparações retiradas, tanto dos modelos de cálculo, como do modelo físico (ensaio), ao longo deste trabalho.

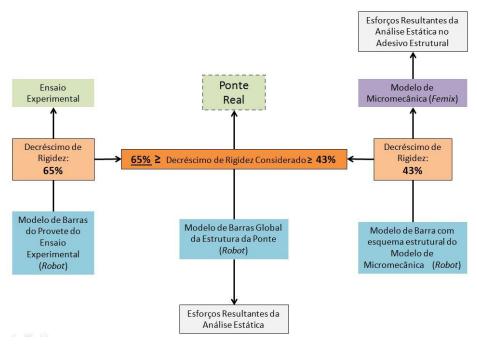


Figura 109 – Esquema resumo da relação entre modelos.

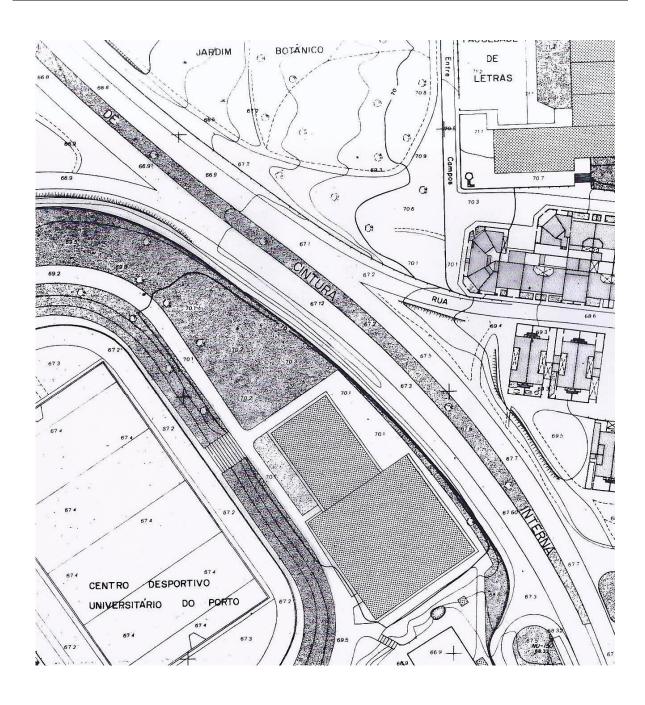
Em suma, visto que o maior obstáculo neste projeto é o estudo da influência que a resina epóxido provoca no comportamento da estrutura, é realizado o ensaio experimental de onde se conclui um decréscimo de rigidez em relação ao respetivo modelo de barras de 65%. Este resultado influencia o modelo de barras global da ponte (modelo utilizado na análise estática) através da imposição desta redução de rigidez. De forma a ganhar confiança nas conclusões obtidas anteriormente, e calcular os esforços atuantes na cola, realiza-se o modelo de micromecânica usando elementos finitos sólidos.

Assim, é possível afirmar que os esforços obtidos através de todas as análises efetuadas cumprem os limites resistentes dos diversos elementos da estrutura. É de salientar, que uma análise dinâmica é imprescindível num desenvolvimento futuro deste projeto, onde poderá ser necessário o controlo da estrutura, através de alterações estruturais, ou da aplicação de dispositivos de controlo de vibrações.

Relativamente ao processo construtivo apresentado, propõem-se a realização de modelos de cálculo para as diferentes fases do processo, ou até mesmo, uma proposta alternativa.

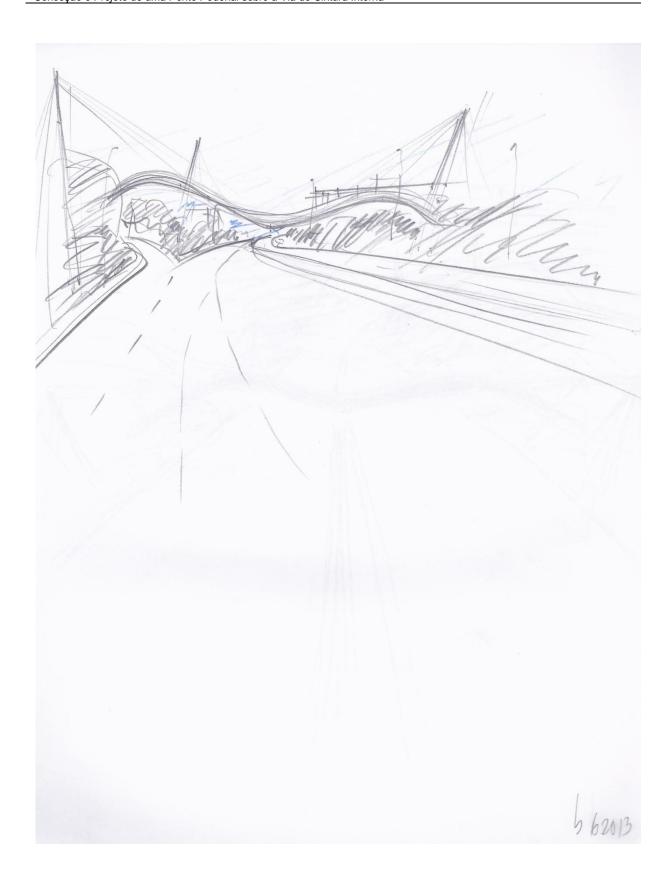
BIBLIOGRAFIA

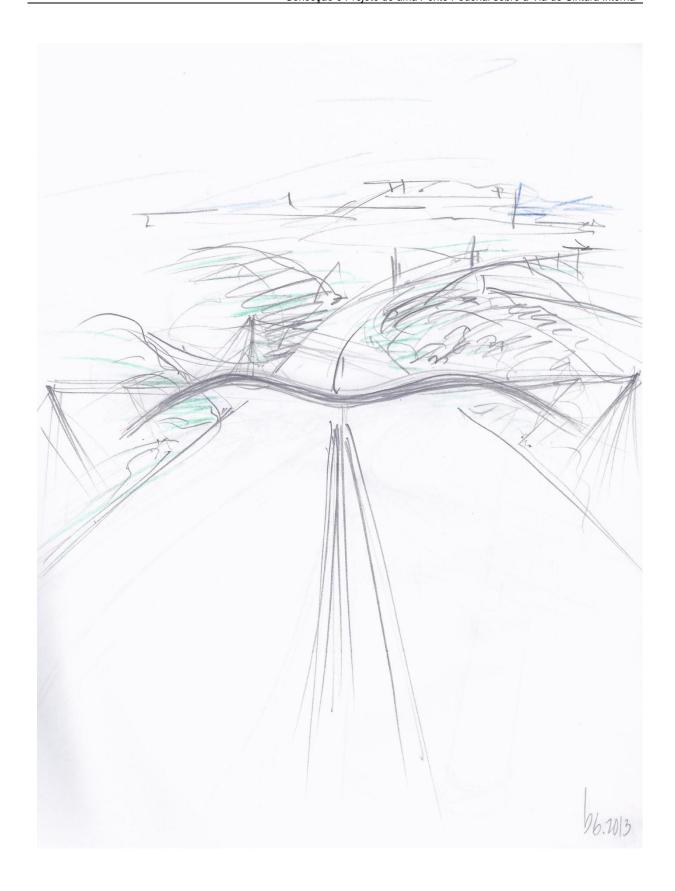
- 1. <u>http://sigarra.up.pt/up/pt/web_base.gera_pagina?p_pagina=2415</u>. Breve história da Universidade do Porto. Maio de 2013.
- 2. http://sigarra.up.pt/up/pt/web_base.gera_pagina?p_pagina=1001373. Campus da Universidade do Porto. Abril de 2013.
- 3. http://www.tchecnologia.com/2011/11/pontes-incriveis.html. Abril de 2013.
- 4. <u>www.architecture.com/UseAnArchitect/FindAnArchitect/Competitions/CaseStudiesNew/Structures/InfinityBridge/InfinityBridge3.aspx#.Udw1ZvmHtfY. Infinity Bridge.</u> Junho de 2013.
- 5. <u>http://en.structurae.de/structures/data/index.cfm?id=s0012012</u>. Pasarela Atirantada "La Rosa". Junho de 2013.
- 6. Costa, D.C.d., *Análise do comportamento dinâmico de uma ponte pedonal.*, in *Departamento de Engenharia Civil* Dezembro 2012, Instituto Superior de Engenharia de Lisboa.
- 7. <u>http://www.binnit.com/view.php?i=4fad08fe9c032</u>. Langkawi sky bridge. Junho de 2013.
- 8. http://www.architeria.com/architecture/melkwegbrug-bridge-by-next-architecture/source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+Architeria+%28Architecture+Building+%7C+Interior+%7C+House+Design+Gallery%29.


 Melkwegbrug Bridge. Junho de 2013.
- 9. http://www.domusweb.it/en/news/2012/12/05/next-architects-melkwegbrug.html. NEXT Architects: Melkwegbrug. Junho de 2013.
- 10. https://ksamedia.osu.edu/media/21706. Borneo Sporenburg pedestrian bridge, Amsterdam, Netherlands. Junho de 2013.
- 11. Fédération Internationale du Béton, *Guidelines for the design of footbridges*. Fib Bullettin, 2005.
- 12. Esteves, José Luís, Estudo do comportamento de adesivos estruturais, Faculdade de Engenharia da Universidade do Porto, Porto. 1990.
- 13. Monteiro, D.F., Análise do comportamento à fractura de juntas de aço efectuadas com adesivos estruturais, Tese de Mestrado, Faculdade de Engenharia da Universidade do Porto, Porto. 1995.
- 14. Esteves, José Luís., *Joint Design: Programme d'aide a la conception des assemblages collées utilisant les elements finis mixtes d'interface* 1995, Universite de Bourgogne.
- 15. Seixas, Pedro, *Projecto de uma ponte pedonal sobre a via estruturante da FEUP*, 2010, Faculdade de Engenharia da Universidade do Porto.
- 16. Eurocode 3: Design of Steel Structures: Part 1-1: General Rules and Rules for Buildings. 1992: European Committee for Standardization.
- 17. Mota Freitas, José, Apontamentos de torção da disciplina de Resistência dos Materiais
- 18. Calgaro, J.A., M. Tschumi, and H. Gulvanessian, *Designer's Guide to Eurocode 1: Actions on Bridges : EN 1991-2, EN 1991-1-1, -1-3 to -1-7 and EN 1990 Annex A2.* 2010: Thomas Telford Limited.
- 19. Eurocódigo 1: Ações em estruturas Parte 1-4: Ações gerais Ações do vento, 2010-03-19.
- 20. Farinha, J.S.B., RSA Anotado Regulamento de Segurança e Acções para Edifícios e Pontes Incluindo Eurocódigos 2006.
- 21. Eurocódigo 1: Ações em estruturas Parte 1-5: Ações gerais Ações térmicas, 2009-12-29.
- 22. Eurocódigo 0 : Bases para o projecto de estruturas. 2009-12-29.
- 23. Vibrações em Pontes Pedonais. Recomendações Técnicas de Projeto. 2008.
- 24. Simões, R.A.D., Manual de Dimensionamento de Estruturas Metálicas. Eurocódigo 3: Projecto de Estruturas de Aço Parte 1-1: Regras gerais e regras para edifícios. 2ª ed. 2007: CMM Associação Portuguesa de Construção Metálica e Mista

ANEXOS

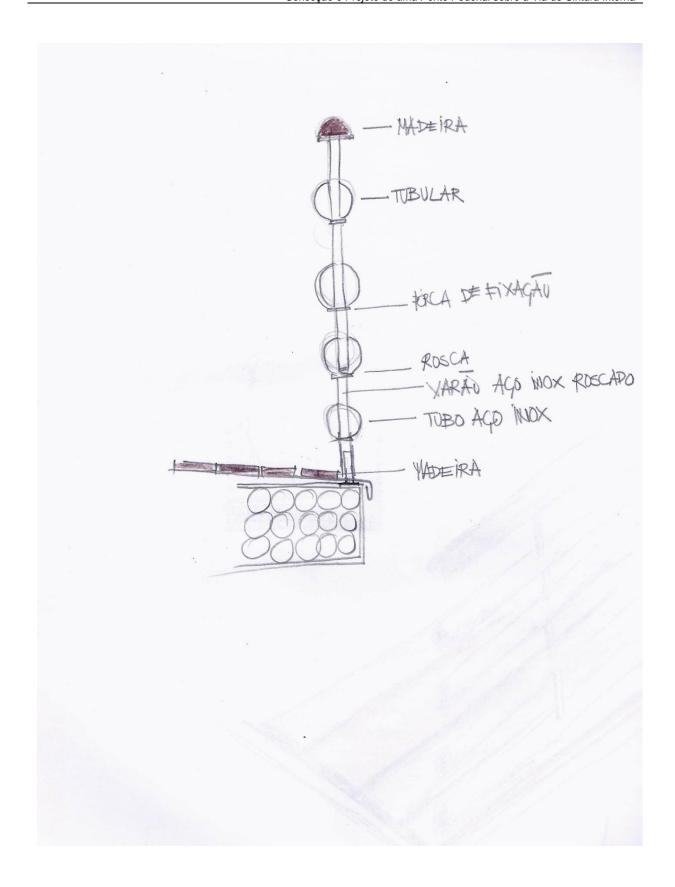
- A1. PLANTA TOPOGRÁFICA DO TERRENO
- A2. ESQUIÇOS DA PONTE REALIZADOS PELA ARQUITETA BÁRBARA RANGEL
- A3. FICHA TÉCNICA DA COLA ARALDITE AW 106
- A4. CATÁLOGO DOS PERFIS DO GRUPO FERPINTA
- A5. CATÁLOGO DOS CABOS DA EMPRESA READAELLI
- A6. RESULTADOS OBTIDOS NO ENSAIO EXPERIMENTAL E NO PROGRAMA DE CÁLCULO ROBOT
- A7. TABELA COM TODAS AS COMBINAÇÕES DE AÇÕES
- A8. VERIFICAÇÃO AO ELU DOS MASTROS NO PROGRAMA DE CÁLCULO ROBOT

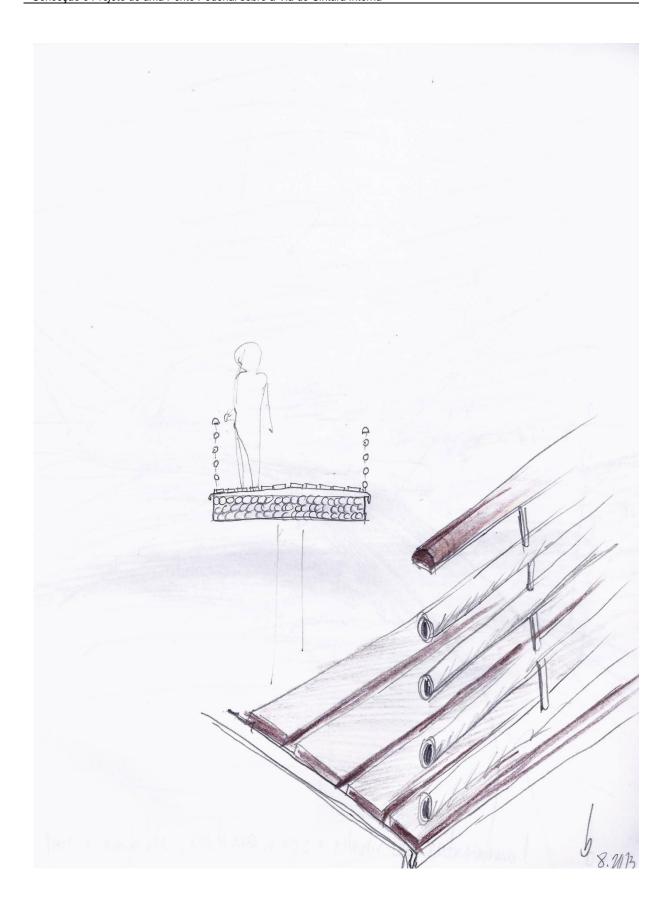

1	Conceção e	Drainta a	to uma D	anta Dada	nal cabra a	Via do C	intura Ir	torne


A1. PLANTA TOPOGRÁFICA DO TERRENO

Conceção e Projeto de uma Ponte Pedonal sobre a Via de Cintura Interna
A2. Esquiços da Ponte realizados pela Arquiteta Bárbara Rangel







Conceção e	Drainta da	Jima Donte	Dodonal	cohro a	Via do I	Cintura	Intorna

A3. FICHA TÉCNICA DA COLA ARALDITE AW 106

Huntsman Advanced Materials Americas Inc.
5121 San Fernando Road West
Los Angeles, CA 90039

Customer Service Hotline: 800.367.8793
Customer Service Faxline: 517.351.6255
Technical Inquiries: 800.817.8260 818.247.6210

website: www.araldite.com e-mail: adhesives_group@huntsman.com

Product Data

ARALDITE® AW 106 Resin Hardener HV 953U **MULTI-PURPOSE EPOXY ADHESIVE**

DESCRIPTION:

Araldite AW 106 resin/Hardener HV 953U epoxy adhesive is a multi-purpose, viscous material that is suitable for bonding a variety of materials including metal, ceramic, and wood. The electrically insulating adhesive is easy to apply either manually by spatula and stiff brush or mechanically with meter/mix and coating equipment. Araldite AW 106 resin/Hardener HV 953U epoxy adhesive cures at temperatures from 68°F (20°C) to 356°F (180°C) with no release of volatile constituents.

APPLICATIONS:

- Metal
- Ceramics
- Wood
- Vulcanized Rubber
- Foams
- **Plastics**

ADVANTAGES:

- Long open time
- High shear and peel strength
- Easy to apply
- Good resistance to static and dynamic loads
- Electrically insulating

TYPICAL			Test Valu	ies ⁽¹⁾
PROPERTIES:	Property Color/appearance	Test Method Visual	Resin Creamy, viscous/liquid	<u>Hardener</u> Amber Liquid
	Specific Gravity	ASTM D-792	1.17	0.92
	Viscosity (cP) @ 77°F (25°C)	ASTM D-2393	50,000	35,000
TYPICAL MIXED PROPERTIES:	Property Reaction Ratio (by weight) Reaction Ratio (by volume)	Test Method	100R	Values⁽¹⁾ /80H /100H
	Pot Life, hours @ 77°F (25°C) (4.fl. oz. mass)	ASTM D-2471	2	
	Mixed viscosity (cP) @ 77°F (25°C)	ASTM D-2393	45,00	0
	¹ Tested @ 77°F (25°C)			

RECOMMENDED	<u>Temperature</u>	Handling Strength	Minimum Cure Time
CURE SCHEDULES:	68°F (20°C)	12 hours	15 hours
	77°F(25°C)	7 hours	12 hours
	104°F (40°C)	2 hours	3 hours
	158°F (70°C)	30 minutes	50 minutes
	212°F (100°C)	6 minutes	10 minutes
	302°F (150°C)	4 minutes	5 minutes

TYPICAL CURED PROPERTIES:

Application of Adhesive

The resin/hardener mix is applied with a spatula to the pretreated and dry joint surfaces.

A layer of adhesive 0.002 to 0.004-inches (0.05 to 0.10-mm) thick will normally impart the greatest lap shear strength to a joint.

The joint components should be assembled and clamped as soon as the adhesive has been applied. Even contact throughout suffices to ensure proper cure.

Standard Test Specimens

Unless otherwise stated, the figures given below were all determined by testing standard specimens made up by lap-jointing 4-inch x 1-inch x 0.06-inch (10-cm x 2.5-cm x 1.5-mm) strips of aluminum. The joint area was 0.5 x 1 inch (12.5 mm x 2.5 cm) in each case.

Property

Lap Shear Strength, psi (MPa)

Effect of Immersion

(Cure cycle 16 hours @ 104°F (40°C). Immersion for 90 days in media listed.)

<u>Media</u>	<u>Test Values⁽¹⁾</u>
Standard - As prepared	2560 (17.6)
Acetone (30 days)	570 (3.9)
Acetylene	430 (2.9)
Gasoline	2410 (16.6)
Ethyl Acetate (30 days)	570 (3.9)
Acetic Acid 10%	Degraded
Methanol	Degraded
Lubricating Oil - HD30	2560 (17.6)
Kerosene	Degraded
Trichloroethylene	Degraded
Water @ 68°F (20°C)	1420 (9.8)
Water @ 194°F (90°C)	430 (2.9)

Lap Shear Strength, psi (MPa) Effect of Tropical Exposure (104°F/40°C at 92% R.H.)

Cure Cycle 16 hrs @ 104°F (40°C)	Exposure Time 0 days 10 days 30 days 60 days 90 days	Test Values (1) 2560 (17.6) 2560 (17.6) 1710 (11.8) 1560 (10.7) 570 (3.9)
20 min @ 212°F (100°C)	0 days 10 days 30 days 60 days 90 days	3980 (27.4) 2560 (17.6) 1710 (11.8) 1560 (10.7) 1280 (8.8)

¹Tested @ 77°F (25°C)

Property Lap Shear Strength, psi (MPa) Effects of cure time and temperature	Test Method ASTM D-1002	Test Values ⁽¹⁾
<u>Cure Temperature</u> 77°F (25°C)	<u>Time</u> 8 hours 15 hours 24 hours 72 hours 5 days	710 (4.9) 1990 (13.7) 2130 (14.7) 2280 (15.7) 2560 (17.6)
158°F (70°C)	1 hour 2 hours 3 hours	3130 (21.5) 3410 (23.5) 3200 (22)
212°F (100°C)	10 minutes 20 minutes 30 minutes	3700 (25.5) 3980 (27.4) 4120 (28.4)
302°F (150°C)	5 minutes 10 minutes 20 minutes	4270 (29.4) 4410 (30.4) 4410 (30.4)
Property Lap Shear Strength, psi (MPa) Effect of Test Temperature	Test Method ASTM D-1002	

Cure Cycle	Test Temp.	
5 days @ 77°F (25°C)	-76°F (-60°C)	2840 (19.5)
	-4°F (-20°C)	2840 (19.5)
	68°F (20°C)	2560 (17.6)
	104°F (40°C)	1420 (9.8)
	140°F (60°C)	570 (3.9)
00i	7005 (0000)	0500 (04.5)
20 min @ 212°F (100°C)	-76°F (-60°C)	3560 (24.5)
	-4°F (-20°C)	3410 (23.5)
	68°F (20°C)	3980 (27.4)
	104°F (40°C)	1990 (13.7)
	140°F (60°C)	1000 (6.9)

(Load applied 10 minutes after specimens reach test temperature.)

¹Tested @ 77°F (25°C)

Lap Shear Strength, psi (MPa) Effect of Heat Aging

Test Method **ASTM D-1002**

(Cured 16 hours @ 104°F (40°C).

Aging Temperature	Exposure Time	Test Values ⁽¹
68°F (20°C)	0 days	2560 (17.6)
	1 years	2560 (17.6)
	2 years	2280 (15.7)
	3 years	1710 (11.8)
	4 years	1990 (13.7)
	5 year	1990 (13.7)
140°F (60°C)	3 days	2560 (17.6)
	10 days	2420 (16.6)
	30 days	2130 (14.7)
176°F (80°C)	3 days	2130 (14.7)
	10 days	2130 (14.7)
	30 days	2130 (14.7)
	60 days	2130 (14.7)
	1 year	1280 (8.8)
	2 years	710 (4.9)
	3 years	710 (4.9)
	4 years	430 (2.9)
	5 years	280 (1.9)
248°F (120°C)	3 days	2130 (14.7)
	10 days	2280 (15.7)
	30 days	2280 (15.7)
	60 days	2130 (14.7)

Property

Lap Shear Strength, psi (MPa) Tested on Metal Substrates

(Cured 20 min @ 212°F (100°C)

<u>Metal</u>	Substrate Thickness	Test Values ⁽¹⁾
	(in./mm)	
Carbon Steel	0.039/1.0	3840 (26.4)
Stainless Steel	0.039/1.0	3270 (22.5)
Galvanized Steel ²	0.06/1.5	1990 (13.7)
Copper	0.06/ 1.5	3270 (22.5)
Brass	0.06/ 1.5	2990 (20.6)

¹Tested @ 77°F (25°C) ²Surface degreased only, not roughened.

Property

Fatigue Strength

Tested using a load frequency of 90 Hz and a 1 inch (25 mm) joint overlap (Cured 20 min @ $212^{\circ}F$ ($100^{\circ}C$)

Fatigue Limit Load

% Static Shear Strength	Cycles to Failure ⁽¹⁾
50	10 ³ -10 ⁴
40	10⁴-10 ⁵
30	10 ⁵ -10 ⁶
25	10 ⁵ -10 ⁶
20	10 ⁶ -10 ⁷
15	10 ⁷

<u>Property</u>	Test Method	Test Values ⁽¹⁾
Ultimate Tensile Strength, Elongation, % Tg per DMA, °F (°C) Hardness, Shore D Coefficient of Thermal Exp (in/in/°C) Roller Peel Test, pli (N/mr	ASTM D-638 ASTM D-4065 ASTM D-2240 pansion ASTM E-831	4800 (33) 9 146 (63) 80 8.5 x 10 ⁻⁵ 28 (4.9)
	,	== ()

¹Tested @ 77°F (25°C)

Electrical Properties

Thermal Conductivity, W/mK	0.22
Surface Resistivity, ohms	1.2 E+16
Dielectric Strength, volt/mil	400
Volume Resistivity, ohms-cm	7.1 E+14
Dielectric Constant, at 50Hz/1KHz/10KHz	3.4/3.2/3.2
Loss Tangent, % at 50Hz/1KHz/10KHz	1.7/1.8/2.6

STORAGE/ SHELF LIFE:

Araldite epoxy adhesive components should be stored in their original, sealed containers at room temperature. When stored at temperatures from 59-77°F (15-25°C), the resin and hardener will remain in useable condition for 12 months from date of shipping from Huntsman.

CAUTION:

Huntsman Advanced Materials Americas Inc. maintains up—to-date Material Safety Data Sheets (MSDS) on all of its products. These sheets contain pertinent information that you may need to protect your employees and customers against any known health or safety hazards associated with our products. Users should review the latest MSDS to determine possible health hazards and appropriate precautions to implement <u>prior to</u> using this material. Copies of the latest MSDS may be requested by calling our customer service group at 800-367-8793 or emailing your request to <u>adhesives group@huntsman.com</u>.

FIRST AID!

<u>Eyes and skin:</u> Flush eyes with water for 15 minutes. Contact a physician if irritation persists. Wash skin thoroughly with soap and water. Remove and wash contaminated clothing before reuse. Inhalation: Remove subject to fresh air.

<u>Swallowing:</u> Dilute by giving water to drink and contact a physician promptly. Never give anything to drink to an unconscious person.

KEEP OUT OF REACH OF CHILDREN

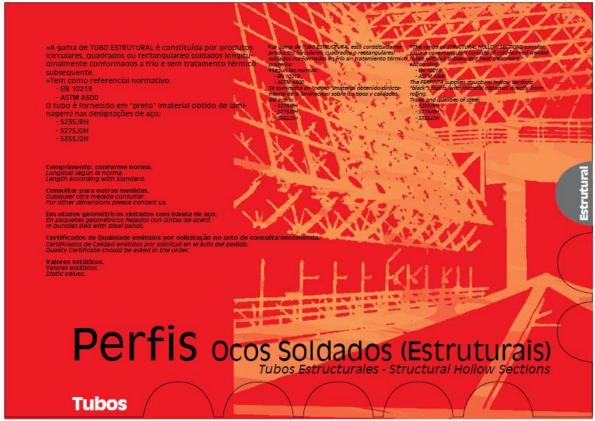
FOR PROFESSIONAL AND INDUSTRIAL USE ONLY

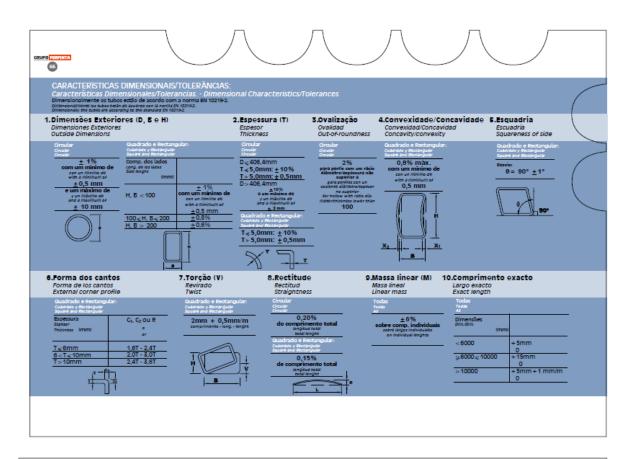
IMPORTANT LEGAL NOTICE:

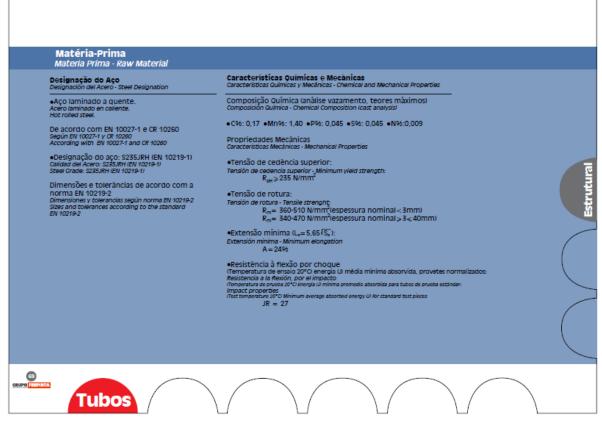
Sales of a referenced product ("Product") are subject to the general terms and conditions of sale of Huntsman Advanced Materials Americas Inc. ("Huntsman").

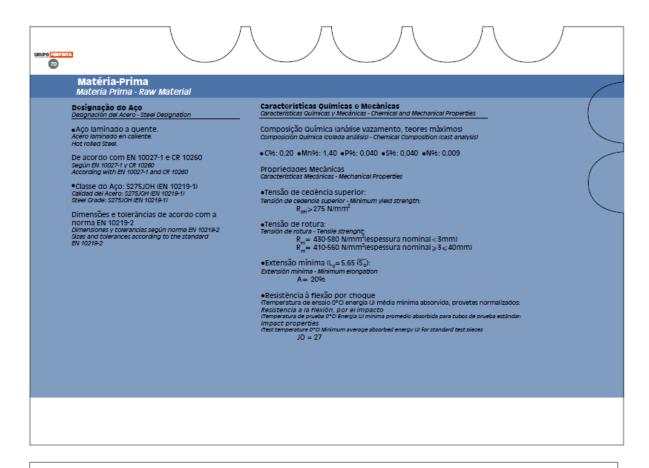
WARRANTY: Huntsman warrants to the Buyer that the Product will conform to the published specifications for that Product at the time of manufacture.

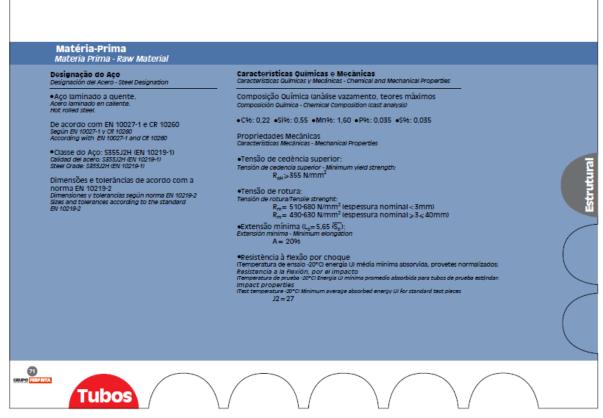
DISCLAIMER AND LIMITATION OF LIABILITY: EXCEPT AS SET FORTH ABOVE, HUNTSMAN MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Huntsman cannot control Buyer's application and use of the Product and accepts no responsibility therefore. No statement or recommendation contained in any Product literature may be construed as a representation about the suitability of a Product for the particular application of Buyer or user or as an inducement to infringe any relevant patent. Buyer is responsible to ensure that its intended use of the Product does not infringe any third-party's intellectual property rights. Huntsman neither assumes, nor authorizes any representative or other person to assume for it, any obligation or liability other than as is expressly set forth herein. UNDER NO CIRCUMSTANCES SHALL HUNTSMAN BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, SPECIAL OR OTHER INDIRECT DAMAGES AS A RESULT OF A BREACH OF ANY WARRANTY OR THE FAILURE OF A PRODUCT OR ANY CLAIM THAT IS ESSENTIALLY BASED UPON SUCH BREACH OR FAILURE. Any claim by Buyer, whether arising in contract, tort, negligence, breach of warranty, strict liability, or otherwise, related to a Product shall be limited to, and the sole liability of Huntsman and the sole remedy of Buyer for any claims shall be for, the purchase price of the Product in respect of which such claim is made. The foregoing DISCLAIMER AND LIMITATION OF LIABILITY supersedes Buyer's documents.

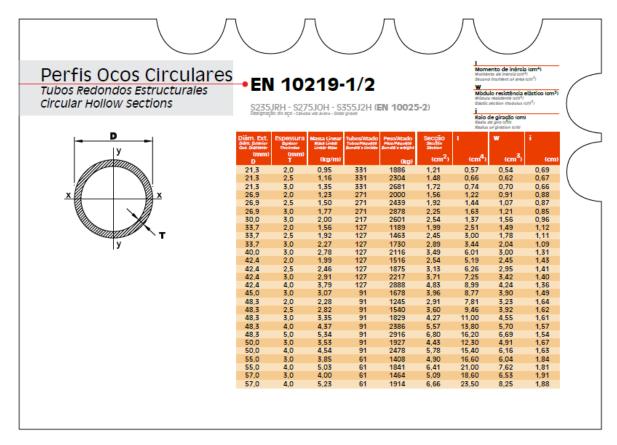

<u>WARNING</u>: Technical data and results are based upon tests under controlled laboratory conditions and must be confirmed by Buyer by testing for its intended conditions of use. The Product has not been tested for, and therefore is not recommended or suitable for, uses for which prolonged contact with mucous membranes, abraded skin, or blood is intended or likely, or for uses for which implantation within the human body is intended, and Huntsman assumes no liability for any such uses.

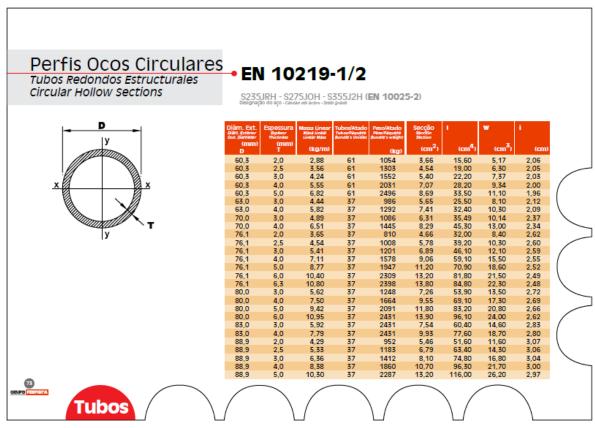

© 2004 Huntsman Advanced Materials Americas Inc. Araldite is a registered trademark of Huntsman LLC or an affiliate thereof in one or more, but not all, countries.

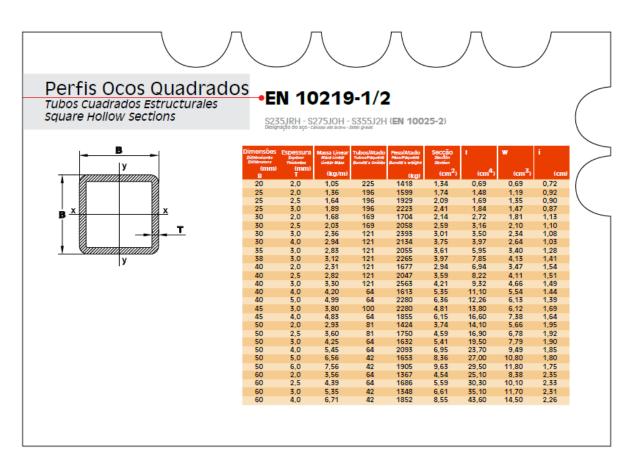

	5 . 5		~ · · · · ·
Conceção e Projeto de um	na Ponte Pedonal si	obre a Via de l	Cintura Interna

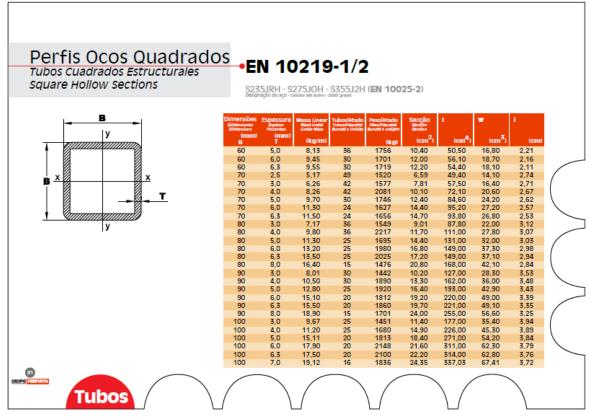

A4. CATÁLOGO DOS PERFIS DO GRUPO FERPINTA











Conceção e	Projeto d	la lima	Ponto	Padana	l cohra a	Via de	Cintura	Intorna

A5. CATÁLOGO DOS CABOS DA EMPRESA READAELLI

Redaelli Engineering

FLC

Funi chiuse Full locked coil strands

Le funi chiuse Redaelli sono costituite da fili di acciaio ad alta resistenza zincati a caldo.

La fune è formata da un nucleo interno di fili tondi e da uno o più strati esterni di fili sagomati a Z.

La forma a Z dei fili è tale da avere un bloccaggio reciproco dei fili per ottenere una sezione compatta.

Le caratteristiche principali di resistenza e della protezione anticorrosione dei fili sono conformi alla EN 12385-10.

Le caratteristiche di resistenza, snervamento, duttilità, allungamento a rottura, piega, torsione, aderenza del protettivo e avvolgimento vengono singolarmente verificate da Redaelli su ogni singolo filo.

La zincatura e duttilità dei fili sono in accordo con le EN 10264 classe A o altri standard richiesti.

La forma speciale dei fili a Z dà superfici di contatto piane e basse pressioni superficiali tra i fili.

Geometrie speciali per i fili a Z possono essere proposte su richieste particolari.

La forma a Z dei fili previene l'ingresso di agenti esterni all'interno dei cavi.

Le funi chiuse Redaelli garantiscono o superano le caratteristiche minime di resistenza a fatica previste dal EN 1993-1-9 and EN 1993-1-11. Redaelli Engineering ha già eseguito molteplici prove di resistenza a fatica su simulacri di fune completi di capicorda uguali a quelli realmente utilizzati.

The full locked coil strands are made by hot dip galvanised high strength steel wires.

The strand is built by an inner core made by round wires and by one or more external layers of Z shaped wires.

The Z shape of the wires is specially made to have a self-locking of the wires to obtain a compact section.

The typical main properties of the wires are conform the EN 12385-10.

Tensile strength, yield stress, ductility, elongation at breaking, bending, torsion, adherence and wrapping properties are individually tested by Readelli on each wire.

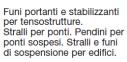
The zinc coating and the wire ductility comply with the EN 10264 class A or other standards required.

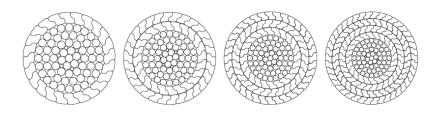
The special shape of the Z shaped wires allows flat contact surfaces and low contact stresses between the wires.

Special geometries for the Z shaped wires may be studied under particular request.

The Z shape of the wires prevents the entry of external agents inside the cables.

The FLC Redaelli cables guarantee and pass the minimum category for fatigue strength detail according to EN 1993-1-9 and EN 1993-1-11. Redaelli Engineering already tested the modulus of elasticity, the breaking force and the fatigue behaviour of several cable mock-ups, with various diameter, complete with sockets equal to the permanent ones.




FLC

Funi chiuse Full locked coil strands

Carrying and prestressing strands for tensostructures. Stays for bridges. Hangers for suspension bridges. Stays and suspension cables for buildings.

Product	d	F _{u,k} ⁽¹⁾	F _{R,d} ⁽²⁾	A	EA	Mass
code	(mm)	(kN)	(kN)	(mm²)	(MN)	(kg/m)
FLC 16	16	250	152	170	28.1	1.4
FLC 20	20	395	239	266	43.9	2.2
FLC 24	24	570	345	383	63.2	3.2
FLC 28	28	775	470	521	86.0	4.3
FLC 32	32	1015	615	681	112	5.7
FLC 36	36	1285	779	862	142	7.2
FLC 40	40	1605	973	1077	178	9.0
FLC 44	44	1945	1179	1303	215	10.8
FLC 48	48	2315	1403	1551	256	12.9
FLC 52	52	2750	1667	1841	304	15.3
FLC 56	56	3190	1933	2136	352	17.8
FLC 60	60	3660	2218	2452	405	20.4
FLC 64	64	4165	2524	2789	460	23.2
FLC 68	68	4700	2848	3149	513	26.2
FLC 72	72	5210	3158	3530	575	29.4
FLC 76	76	5790	3509	3933	641	32.7
FLC 80	80	6405	3882	4358	710	36.3
FLC 84	84	7045	4270	4805	783	40.0
FLC 88	88	7720	4679	5274	860	43.9
FLC 92	92	8430	5109	5764	940	48.0
FLC 96	96	9165	5555	6276	1023	52.2
FLC 100	100	10050	6091	6890	1123	57.3
FLC 104	104	10860	6582	7452	1215	62.0
FLC 108	108	11700	7091	8037	1310	66.9
FLC 112	112	12720	7709	8744	1425	72.8
FLC 116	116	13635	8264	9379	1529	78.0
FLC 120	120	14585	8839	10037	1636	83.5
FLC 124	124	15565	9433	10718	1747	89.2
FLC 128	128	16765	10161	11551	1883	96.1
FLC 132	132	17820	10800	12285	1966	102.2
FLC 136	136	18910	11461	13040	2086	108.5
FLC 140	140	20260	12279	13976	2236	116.3
FLC 144	144	21425	12985	14786	2366	123.0

Diametro nominale Nominal diameter $\mathsf{F}_{\mathsf{u},\mathsf{k}}$ MBL (Forza di rottura minima) (Minimum breaking load) Forza resistente di progetto Design load $F_{R,d}$ Sezione metallica Metallic cross section Α

Rigidezza elastica Elastic stiffness EA

Note:

d

 $^{\text{(1)}}\,\mathsf{F}_{u,k}$ $\begin{array}{l} \text{MBL / } \gamma_{R} \\ \text{with } \gamma_{R} = 1 \text{ (EC3 1-11)} \end{array}$

 $^{(2)}$ F_{R,d} (MBL / 1.5) / γ _R with γ _R = 1.1

Conceção e Projeto de uma Ponte Pedonal sobre a Via de Cintura Interna
AC DECUE TARGE OFFICE NO FINANCE EXPERIMENTAL TARGET
A6. RESULTADOS OBTIDOS NO ENSAIO EXPERIMENTAL E NO <i>ROBOT</i>

	Ensaio	Robot	Ensaio	Robot
Força (kN)	Deslocamentos (m)	Deslocamentos (m)	K (kN/m)	K (kN/m)
0.007052	3.050000E-07	9.111620E-06	23121.311	773.957
0.011183	6.154000E-06	2.285846E-05	1817.192	489.228
0.01844	6.328800E-05	3.624874E-05	291.366	508.707
0.026255	1.280630E-04	5.977168E-05	205.016	439.255
0.033814	1.899860E-04	8.510334E-05	177.982	397.329
0.041116	2.490290E-04	1.096052E-04	165.105	375.128
0.048193	2.999850E-04	1.332740E-04	160.651	361.608
0.053994	3.487760E-04	1.562135E-04	154.810	345.642
0.057317	3.863770E-04	1.750169E-04	148.345	327.494
0.062282	4.250130E-04	1.857882E-04	146.541	335.231
0.068252	4.772100E-04	2.018818E-04	143.023	338.079
0.075348	5.377240E-04	2.212330E-04	140.124	340.582
0.079595	5.755720E-04	2.442341E-04	138.289	325.896
0.082419	5.999760E-04	2.580004E-04	137.370	319.453
0.088887	6.537950E-04	2.671541E-04	135.955	332.718
0.094884	7.050210E-04	2.881196E-04	134.583	329.322
0.100479	7.493800E-04	3.075584E-04	134.083	326.699
0.106617	8.053270E-04	3.256941E-04	132.390	327.353
0.111282	8.514320E-04	3.455899E-04	130.700	322.006
0.115774	8.931250E-04	3.607111E-04	129.628	320.960
0.120164	9.327820E-04	3.752715E-04	128.823	320.205
0.126165	9.783100E-04	3.895013E-04	128.962	323.914
0.131164	1.025232E-03	4.089531E-04	127.936	320.731
0.135063	1.062400E-03	4.251569E-04	127.130	317.678
0.138678	1.094666E-03	4.377952E-04	126.685	316.765
0.143909	1.141817E-03	4.495129E-04	126.035	320.144
0.14682	1.164674E-03	4.664687E-04	126.061	314.748
0.150888	1.195133E-03	4.759045E-04	126.252	317.055
0.154601	1.223555E-03	4.890906E-04	126.354	316.099
0.157182	1.253613E-03	5.011259E-04	125.383	313.658
0.160415	1.281203E-03	5.094920E-04	125.207	314.853
0.162897	1.306893E-03	5.199715E-04	124.644	313.281
0.16657	1.334737E-03	5.280167E-04	124.796	315.464
0.170676	1.371942E-03	5.399224E-04	124.405	316.112
0.175773	1.415843E-03	5.532317E-04	124.147	317.720
0.178678	1.443867E-03	5.697532E-04	123.750	313.606
0.180774	1.467241E-03	5.791695E-04	123.207	312.126
0.184235	1.495574E-03	5.859635E-04	123.187	314.414
0.188923	1.534544E-03	5.971820E-04	123.113	316.357
0.193361	1.571372E-03	6.123778E-04	123.052	315.754
0.198579	1.605811E-03	6.267632E-04	123.663	316.833

0.201215	1.633401E-03	6.436769E-04	123.188	312.603
0.20153	1.643323E-03	6.522212E-04	122.636	308.990
0.20283	1.654446E-03	6.532423E-04	122.597	310.497
0.204679	1.675338E-03	6.574561E-04	122.172	311.320
0.206677	1.697200E-03	6.634495E-04	121.775	311.519
0.209202	1.723383E-03	6.699258E-04	121.390	312.276
0.213241	1.758333E-03	6.781104E-04	121.275	314.464
0.214072	1.771280E-03	6.912025E-04	120.857	309.710
0.215222	1.777533E-03	6.938961E-04	121.079	310.165
0.217748	1.798607E-03	6.976237E-04	121.065	312.128
0.219546	1.810256E-03	7.058115E-04	121.279	311.055
0.222259	1.833112E-03	7.116396E-04	121.247	312.320
0.226498	1.866240E-03	7.204336E-04	121.366	314.391
0.22707	1.885913E-03	7.341739E-04	120.403	309.286
0.22683	1.882908E-03	7.360280E-04	120.468	308.181
0.229279	1.899634E-03	7.352501E-04	120.696	311.838
0.238557	1.969894E-03	7.431883E-04	121.101	320.991
0.244689	2.019692E-03	7.732621E-04	121.152	316.437
0.247343	2.051968E-03	7.931385E-04	120.539	311.853
0.251942	2.085784E-03	8.017412E-04	120.790	314.244
0.255986	2.129704E-03	8.166485E-04	120.198	313.459
0.260932	2.163985E-03	8.297567E-04	120.579	314.468
0.262224	2.179580E-03	8.457888E-04	120.309	310.035
0.265707	2.209867E-03	8.499767E-04	120.237	312.605
0.268153	2.237857E-03	8.612665E-04	119.826	311.347
0.267839	2.241855E-03	8.691950E-04	119.472	308.146
0.267949	2.248217E-03	8.681772E-04	119.183	308.634
0.270606	2.275810E-03	8.685338E-04	118.905	311.566
0.272661	2.292198E-03	8.771462E-04	118.952	310.850
0.273214	2.297450E-03	8.838073E-04	118.921	309.133
0.276466	2.327537E-03	8.855998E-04	118.780	312.179
0.277519	2.339126E-03	8.961409E-04	118.642	309.682
0.281357	2.362629E-03	8.995541E-04	119.086	312.774
0.281707	2.379790E-03	9.119947E-04	118.375	308.891
0.284239	2.392609E-03	9.131292E-04	118.799	311.280
0.288093	2.441830E-03	9.213364E-04	117.982	312.690
0.290237	2.460337E-03	9.338288E-04	117.966	310.803
0.291685	2.481070E-03	9.407784E-04	117.564	310.046
0.295418	2.498663E-03	9.454720E-04	118.230	312.456
0.296443	2.510120E-03	9.575722E-04	118.099	309.578
0.297784	2.523940E-03	9.608947E-04	117.984	309.903
0.297397	2.528915E-03	9.652414E-04	117.599	308.106
0.298697	2.535740E-03	9.639870E-04	117.795	309.856
0.300773	2.559365E-03	9.682008E-04	117.519	310.651

0.300807	2.561426E-03	9.749300E-04	117.437	308.542
0.301446	2.565689E-03	9.750402E-04	117.491	309.163
0.302946	2.588228E-03	9.771115E-04	117.048	310.042
0.302622	2.592051E-03	9.819736E-04	116.750	308.177
0.302688	2.588929E-03	9.809234E-04	116.916	308.575
0.304416	2.602339E-03	9.811373E-04	116.978	310.269
0.30611	2.623661E-03	9.867385E-04	116.673	310.224
0.305754	2.625247E-03	9.922294E-04	116.467	308.148
0.30588	2.624755E-03	9.910755E-04	116.537	308.634
0.305622	2.625357E-03	9.914839E-04	116.412	308.247
0.30541	2.624605E-03	9.906476E-04	116.364	308.293
0.305296	2.626730E-03	9.899604E-04	116.227	308.392
0.304928	2.624599E-03	9.895909E-04	116.181	308.135
0.305942	2.629671E-03	9.883981E-04	116.342	309.533
0.305593	2.633534E-03	9.916849E-04	116.039	308.155
0.305523	2.634373E-03	9.905536E-04	115.976	308.437
0.305291	2.635209E-03	9.903267E-04	115.851	308.273
0.305036	2.635708E-03	9.895747E-04	115.732	308.250
0.304732	2.635674E-03	9.887481E-04	115.618	308.200
0.304896	2.636672E-03	9.877627E-04	115.637	308.673
0.304343	2.636015E-03	9.882943E-04	115.456	307.948
0.304402	2.635573E-03	9.865018E-04	115.497	308.567
0.304178	2.635918E-03	9.866931E-04	115.397	308.280
0.304116	2.637056E-03	9.859670E-04	115.324	308.444
0.303973	2.636399E-03	9.857660E-04	115.299	308.362
0.303857	2.636132E-03	9.853025E-04	115.266	308.390
0.303752	2.635768E-03	9.849265E-04	115.242	308.401
0.303784	2.637283E-03	9.845862E-04	115.188	308.540
0.303498	2.636381E-03	9.846899E-04	115.119	308.217
0.303397	2.636502E-03	9.837628E-04	115.076	308.405
0.303456	2.636505E-03	9.834355E-04	115.098	308.567
0.303189	2.636680E-03	9.836267E-04	114.989	308.236
0.303057	2.636493E-03	9.827612E-04	114.947	308.373
0.303041	2.635151E-03	9.823334E-04	114.999	308.491
0.302889	2.636236E-03	9.822815E-04	114.894	308.353
0.30287	2.635435E-03	9.817888E-04	114.922	308.488
0.302687	2.636574E-03	9.817272E-04	114.803	308.321
0.302511	2.635864E-03	9.811340E-04	114.767	308.328
0.302597	2.635642E-03	9.805636E-04	114.810	308.595
0.302405	2.635815E-03	9.808423E-04	114.729	308.312
0.302086	2.636115E-03	9.802200E-04	114.595	308.182
0.302265	2.635748E-03	9.791860E-04	114.679	308.690
0.302104	2.635913E-03	9.797662E-04	114.611	308.343
0.302148	2.636383E-03	9.792443E-04	114.607	308.552

_				
0.302061	2.636512E-03	9.793869E-04	114.568	308.418
0.301733	2.636712E-03	9.791049E-04	114.435	308.172
0.301838	2.636523E-03	9.780417E-04	114.483	308.615
0.301801	2.636754E-03	9.783821E-04	114.459	308.469
0.301568	2.635871E-03	9.782622E-04	114.409	308.269
0.301734	2.636325E-03	9.775069E-04	114.453	308.677
0.301924	2.636488E-03	9.780450E-04	114.517	308.702
0.301459	2.636877E-03	9.786608E-04	114.324	308.032
0.301604	2.636469E-03	9.771536E-04	114.397	308.656
0.30125	2.636862E-03	9.776236E-04	114.246	308.145
0.301293	2.636753E-03	9.764761E-04	114.267	308.551
0.301148	2.637249E-03	9.766155E-04	114.190	308.359
0.301157	2.636843E-03	9.761455E-04	114.211	308.517
0.301101	2.637510E-03	9.761747E-04	114.161	308.450
0.300654	2.637056E-03	9.759932E-04	114.011	308.049
0.300958	2.637290E-03	9.745443E-04	114.116	308.819
0.301293	2.637532E-03	9.755296E-04	114.233	308.851
0.303547	2.657548E-03	9.766155E-04	114.221	310.815
0.304128	2.680205E-03	9.839217E-04	113.472	309.098
0.303804	2.680744E-03	9.858049E-04	113.328	308.179
0.303819	2.680545E-03	9.847547E-04	113.342	308.523
0.303833	2.680735E-03	9.848033E-04	113.339	308.522
0.304177	2.681638E-03	9.848487E-04	113.430	308.857
0.304121	2.681327E-03	9.859638E-04	113.422	308.450
0.304	2.681898E-03	9.857822E-04	113.353	308.385
0.304091	2.682539E-03	9.853900E-04	113.359	308.600
0.304285	2.681429E-03	9.856850E-04	113.479	308.704
0.304178	2.682151E-03	9.863138E-04	113.408	308.399
0.304047	2.682953E-03	9.859670E-04	113.326	308.374
0.303971	2.682663E-03	9.855424E-04	113.309	308.430
0.304058	2.682492E-03	9.852960E-04	113.349	308.596
0.303776	2.682761E-03	9.855780E-04	113.233	308.221
0.303867	2.683212E-03	9.846639E-04	113.247	308.600
0.303415	2.682639E-03	9.849589E-04	113.103	308.048
0.303653	2.684104E-03	9.834938E-04	113.130	308.749
0.303546	2.682909E-03	9.842653E-04	113.141	308.399
0.303612	2.683178E-03	9.839184E-04	113.154	308.574
0.303491	2.683017E-03	9.841324E-04	113.116	308.384
0.303396	2.683309E-03	9.837401E-04	113.068	308.411
0.30337	2.682945E-03	9.834322E-04	113.074	308.481
0.303449	2.682811E-03	9.833479E-04	113.109	308.588
0.303449	2.682603E-03	9.836040E-04	113.117	308.507
0.303246	2.682662E-03	9.836040E-04	113.039	308.301
0.303045	2.683116E-03	9.829460E-04	112.945	308.303

0.302992	2.682749E-03	9.822945E-04	112.941	308.453
0.304521	2.707835E-03	9.821227E-04	112.459	310.064
0.305114	2.716456E-03	9.870788E-04	112.321	309.108
0.304779	2.716900E-03	9.890010E-04	112.179	308.169
0.304428	2.716439E-03	9.879151E-04	112.069	308.152
0.304561	2.716186E-03	9.867773E-04	112.128	308.642
0.305198	2.716787E-03	9.872085E-04	112.338	309.153
0.306069	2.719117E-03	9.892732E-04	112.562	309.388
0.30592	2.719888E-03	9.920965E-04	112.475	308.357
0.305901	2.720641E-03	9.916135E-04	112.437	308.488
0.307232	2.721192E-03	9.915520E-04	112.903	309.850
0.307756	2.722238E-03	9.958663E-04	113.053	309.033
0.307223	2.723676E-03	9.975648E-04	112.797	307.973
0.305948	2.724544E-03	9.958371E-04	112.293	307.227
0.305926	2.724540E-03	9.917043E-04	112.285	308.485
0.306042	2.723910E-03	9.916330E-04	112.354	308.624
0.30601	2.724174E-03	9.920090E-04	112.331	308.475
0.30602	2.724103E-03	9.919053E-04	112.338	308.517
0.306197	2.724216E-03	9.919377E-04	112.398	308.686
0.306488	2.724284E-03	9.925114E-04	112.502	308.800
0.309007	2.787173E-03	9.934547E-04	110.868	311.043
0.307729	2.801840E-03	1.001620E-03	109.831	307.231
0.307377	2.801599E-03	9.974773E-04	109.715	308.154
0.309782	2.801669E-03	9.963363E-04	110.571	310.921
0.311025	2.802023E-03	1.004132E-03	111.000	309.745
0.312132	2.801626E-03	1.008161E-03	111.411	309.605
0.311945	2.802631E-03	1.011749E-03	111.304	308.322
0.311436	2.802125E-03	1.011143E-03	111.143	308.004
0.311202	2.802392E-03	1.009493E-03	111.049	308.275
0.310732	2.802365E-03	1.008735E-03	110.882	308.041
0.310132	2.802254E-03	1.007211E-03	110.672	307.912
0.309677	2.802321E-03	1.005266E-03	110.507	308.055
0.309396	2.802350E-03	1.003792E-03	110.406	308.227
0.309264	2.802273E-03	1.002881E-03	110.362	308.376
0.309173	2.802574E-03	1.002453E-03	110.318	308.417
0.309257	2.803069E-03	1.002158E-03	110.328	308.591
0.308949	2.802828E-03	1.002430E-03	110.228	308.200
0.309129	2.802808E-03	1.001432E-03	110.293	308.687
0.309086	2.802285E-03	1.002015E-03	110.298	308.464
0.308884	2.801989E-03	1.001876E-03	110.237	308.306
0.308768	2.802389E-03	1.001221E-03	110.180	308.391
0.3089	2.801909E-03	1.000845E-03	110.246	308.639
0.308673	2.802033E-03	1.001273E-03	110.160	308.281
0.308611	2.802285E-03	1.000537E-03	110.128	308.445

0.308899	2.801981E-03	1.000336E-03	110.243	308.795
0.308724	2.801478E-03	1.001270E-03	110.200	308.333
0.308617	2.802616E-03	1.000702E-03	110.117	308.400
0.308576	2.802601E-03	1.000356E-03	110.103	308.466
0.308595	2.802943E-03	1.000223E-03	110.097	308.526
0.308634	2.802203E-03	1.000284E-03	110.140	308.546
0.308658	2.802106E-03	1.000411E-03	110.152	308.531
0.308496	2.801835E-03	1.000489E-03	110.105	308.345
0.308451	2.801796E-03	9.999634E-04	110.090	308.462
0.308426	2.801385E-03	9.998176E-04	110.098	308.482
0.308422	2.801567E-03	9.997365E-04	110.089	308.503
0.308331	2.801350E-03	9.997236E-04	110.065	308.416
0.308248	2.801954E-03	9.994286E-04	110.012	308.424
0.308174	2.802138E-03	9.991596E-04	109.978	308.433
0.308122	2.801778E-03	9.989197E-04	109.974	308.455
0.308064	2.801757E-03	9.987511E-04	109.954	308.449
0.308014	2.802179E-03	9.985631E-04	109.919	308.457
0.307763	2.802045E-03	9.984011E-04	109.835	308.256
0.307878	2.801972E-03	9.975875E-04	109.879	308.623
0.307877	2.801999E-03	9.979602E-04	109.878	308.506
0.307755	2.801745E-03	9.979570E-04	109.844	308.385
0.307942	2.801626E-03	9.975615E-04	109.915	308.695
0.307747	2.801661E-03	9.981677E-04	109.844	308.312
0.307739	2.801404E-03	9.975356E-04	109.852	308.499
0.307549	2.801686E-03	9.975097E-04	109.773	308.317
0.307688	2.802016E-03	9.968938E-04	109.810	308.647
0.307712	2.801908E-03	9.973444E-04	109.822	308.531
0.307637	2.802249E-03	9.974222E-04	109.782	308.432
0.307604	2.801874E-03	9.971790E-04	109.785	308.474
0.307638	2.802004E-03	9.970721E-04	109.792	308.541
0.30754	2.801996E-03	9.971823E-04	109.757	308.409
0.307638	2.801838E-03	9.968646E-04	109.799	308.606
0.307734	2.802259E-03	9.971823E-04	109.816	308.604
0.307385	2.802499E-03	9.974935E-04	109.682	308.157
0.307382	2.802528E-03	9.963622E-04	109.680	308.504
0.307506	2.802664E-03	9.963525E-04	109.719	308.632
0.307178	2.802745E-03	9.967544E-04	109.599	308.178
0.307475	2.802434E-03	9.956912E-04	109.717	308.806
0.307278	2.802525E-03	9.966539E-04	109.643	308.310
0.307387	2.802671E-03	9.960154E-04	109.676	308.617
0.307383	2.803001E-03	9.963687E-04	109.662	308.503
0.307213	2.802503E-03	9.963557E-04	109.621	308.337
0.307225	2.802557E-03	9.958047E-04	109.623	308.519
0.306882	2.802425E-03	9.958436E-04	109.506	308.163

0.307101	2.802492E-03	9.947318E-04	109.581	308.727
0.307252	2.802262E-03	9.954417E-04	109.644	308.659
0.306993	2.802213E-03	9.959311E-04	109.554	308.247
0.307006	2.802690E-03	9.950916E-04	109.540	308.520
0.307009	2.802845E-03	9.951337E-04	109.535	308.510
0.307003	2.802739E-03	9.951434E-04	109.537	308.501
0.307054	2.802333E-03	9.951240E-04	109.571	308.559
0.306845	2.801984E-03	9.952893E-04	109.510	308.297
0.306929	2.802212E-03	9.946118E-04	109.531	308.592
0.306812	2.802108E-03	9.948841E-04	109.493	308.390
0.306952	2.802169E-03	9.945049E-04	109.541	308.648
0.306882	2.801713E-03	9.949587E-04	109.534	308.437
0.3068	2.801847E-03	9.947318E-04	109.499	308.425
0.306768	2.801789E-03	9.944660E-04	109.490	308.475
0.306773	2.801808E-03	9.943623E-04	109.491	308.512
0.306595	2.801805E-03	9.943785E-04	109.428	308.328
0.306588	2.801882E-03	9.938015E-04	109.422	308.500
0.306396	2.802416E-03	9.937788E-04	109.333	308.314
0.306461	2.802776E-03	9.931565E-04	109.342	308.573
0.306541	2.802818E-03	9.933671E-04	109.369	308.588
0.306671	2.802193E-03	9.936265E-04	109.440	308.638
0.306507	2.802538E-03	9.940478E-04	109.368	308.342
0.306494	2.802674E-03	9.935162E-04	109.358	308.494

A7. COMBINAÇÕES DE AÇÕES

				Combina	ição de a	ações								
							Ação base					npanhante	e	
Comb Robot	EL	numero da comb	Descrição	G_{kj}	Υ_{G}		ψ			ψ				
		uu 002				$Q_{k,j}$	0	1	2	$Q_{k,i}$	0	1	2	Υ _Q
26	ELS	1	permanente	PERM	_	_	_	_	_	_	_	_	_	_
27	ELS	2	combinação frequente	PERM	_	SC1V	_	0.4	_	TU1	-	_	0.5	_
28	ELS	3	combinação frequente	PERM	_	SC1V	_	0.4	_	TU2	_	_	0.5	_
29	ELS	4	combinação frequente	PERM	_	SC1V	-	0.4	-	TD1	-	-	0.5	-
30	ELS	5	combinação frequente	PERM	-	SC3V	-	0.4	-	TU1	-	-	0.5	_
31	ELS	6	combinação frequente	PERM	_	SC3V	-	0.4	-	TU2	_	-	0.5	_
32	ELS	7	combinação frequente	PERM	_	SC3V	-	0.4	-	TD1	_	-	0.5	_
33	ELS	8	combinação frequente	PERM	_	SC2V	-	0.4	-	TU1	_	-	0.5	_
34	ELS	9	combinação frequente	PERM	_	SC2V	-	0.4	-	TU2	_	-	0.5	_
35	ELS	10	combinação frequente	PERM	-	SC2V	-	0.4	-	TD1	-	-	0.5	_
36	ELS	11	combinação frequente	PERM	-	TU1	-	0.6	-	SC1V	-	-	0	_
37	ELS	12	combinação frequente	PERM	-	TU2	-	0.6	-	SC3V	-	-	0	-
38	ELS	13	combinação frequente	PERM	_	TD1	_	0.6	_	SC2V	_	_	0	_
39	ELS	14	Combinação Quase- permanente	PERM	_	SC1V	_	_	0.4	-	-	_	_	-
40	ELS	15	Combinação Quase- permanente	PERM	-	SC2V	_	-	0.4	_	_	_	_	-
41	ELS	16	Combinação Quase- permanente	PERM	_	SC3V	-	-	0.4	_	-	-	-	-
42	ELS	17	Combinação rara/caracteristica	PERM	_	SC1V	_	_	_	TU1	0.6	_	-	-
43	ELS	18	Combinação rara/caracteristica	PERM	_	SC1V	-	-	-	TU2	0.6	-	-	-
44	ELS	19	Combinação	PERM	_	SC1V	_	_	_	TD1	0.6	_	_	_

Ì			rara/caracteristica											
45	ELS	20	Combinação rara/caracteristica	PERM	_	SC2V	_	-	-	TU1	0.6	_	-	-
46	ELS	21	Combinação rara/caracteristica	PERM	-	SC2V	-	-	-	TU2	0.6	-	-	_
47	ELS	22	Combinação rara/caracteristica	PERM	-	SC2V	-	-	-	TD1	0.6	-	-	_
48	ELS	23	Combinação rara/caracteristica	PERM	_	SC3V	_	_	_	TU1	0.6	_	_	_
49	ELS	24	Combinação rara/caracteristica	PERM	_	SC3V	_	-	-	TU2	0.6	-	-	_
50	ELS	25	Combinação rara/caracteristica	PERM	_	SC3V	_	_	_	TD1	0.6	_	_	_
51	ELS	26	Combinação rara/caracteristica	PERM	_	TU1	_	-	_	SC1V	0.4	_	-	-
52	ELS	27	Combinação rara/caracteristica	PERM	_	TU2	_	-	_	SC1V	0.4	_	-	-
53	ELS	28	Combinação rara/caracteristica	PERM	_	TD1	-	-	-	SC1V	0.4	-	-	_
54	ELS	29	Combinação rara/caracteristica	PERM	_	TU1	-	-	-	SC2V	0.4	-	-	_
55	ELS	30	Combinação rara/caracteristica	PERM	-	TU2	-	-	-	SC2V	0.4	-	-	-
56	ELS	31	Combinação rara/caracteristica	PERM	_	TD1	-	-	-	SC2V	0.4	_	-	-
57	ELS	32	Combinação rara/caracteristica	PERM	-	TU1	-	-	-	SC3V	0.4	-	-	-
58	ELS	33	Combinação rara/caracteristica	PERM	-	TU2	-	-	-	SC3V	0.4	-	-	-
59	ELS	34	Combinação rara/caracteristica	PERM	-	TD1	-	-	-	SC3V	0.4	-	-	-
60	ELS	35	Combinação rara/caracteristica	PERM	-	SC1V	-	-	-	VZ1	0.3	_	-	_
61	ELS	36	Combinação rara/caracteristica	PERM	_	SC3V	_	-	-	VZ1	0.3	_	-	_
62	ELS	37	Combinação rara/caracteristica	PERM	-	VZ2	_	-	-	_	-	_	-	-
63	ELS	38	Combinação rara/caracteristica	PERM	-	VY1	_	-	-	SC1H	0.4	-	-	-
64	ELS	39	Combinação rara/caracteristica	PERM	-	VX1	-	-	-	_	-	-	-	-
65	ELS	40	Combinação rara/caracteristica	PERM	_	SC2V	-	_	-	VZ2	0.3	-	-	-

66	ELS	41	Combinação rara/caracteristica	PERM	_	SC2V	_	-	_	VZ1	0.3	_	_	-
67	ELU	42	STR	PERM	1.35	SC1V	-	_	-	VZ1	0.3	-	-	1.5
68	ELU	43	STR	PERM	1.35	SC2V	-	-	_	VZ1	0.3	-	-	1.5
69	ELU	44	STR	PERM	1.35	SC3V	_	_	-	VZ1	0.3	_	_	1.5
70	ELU	45	STR	PERM	1.35	VZ1	-	_	_	SC1V	0.4	_	-	1.5
71	ELU	46	STR	PERM	1.35	VZ1	_	_	-	SC2V	0.4	_	_	1.5
72	ELU	47	STR	PERM	1.35	VZ1	_	_	_	SC3V	0.4	_	_	1.5
73	ELU	48	STR	PERM	1	VZ2	_	_	-	-	_	_	_	1.5
74	ELU	49	STR	PERM	1.35	VY1	_	_	_	SC1H	0.4	_	_	1.5
75	ELU	50	STR	PERM	1.35	SC1H	_	-	_	VY1	0.3	_	_	1.5
76	ELU	51	STR	PERM	1.35	SC1V	-	-	_	TU1	0.6	-	-	1.5
77	ELU	52	STR	PERM	1.35	SC1V	-	-	_	TU2	0.6	-	-	1.5
78	ELU	53	STR	PERM	1.35	SC1V	-	-	_	TD1	0.6	-	-	1.5
79	ELU	54	STR	PERM	1.35	SC2V	_	-	_	TU1	0.6	_	_	1.5
80	ELU	55	STR	PERM	1.35	SC2V	_	-	_	TU2	0.6	_	_	1.5
81	ELU	56	STR	PERM	1.35	SC2V	_	_	-	TD1	0.6	_	_	1.5
82	ELU	57	STR	PERM	1.35	SC3V	_	-	_	TU1	0.6	_	_	1.5
83	ELU	58	STR	PERM	1.35	SC3V	_	_	_	TU2	0.6	_	_	1.5
84	ELU	59	STR	PERM	1.35	SC3V	_	-	_	TD1	0.6	_	_	1.5
85	ELU	60	STR	PERM	1.35	TU1	-	-	_	SC1V	0.4	_	-	1.5
86	ELU	61	STR	PERM	1.35	TU2	_	-	_	SC1V	0.4	_	_	1.5
87	ELU	62	STR	PERM	1.35	TD1	-	-	_	SC1V	0.4	_	-	1.5

88	ELU	63	STR	PERM	1.35	TU1	-	_	_	SC2V	0.4	_	_	1.5
89	ELU	64	STR	PERM	1.35	TU2	-	_	_	SC2V	0.4	_	_	1.5
90	ELU	65	STR	PERM	1.35	TD1	-	_	_	SC2V	0.4	-	-	1.5
91	ELU	66	STR	PERM	1.35	TU1	-	_	_	SC3V	0.4	_	_	1.5
92	ELU	67	STR	PERM	1.35	TU2	-	_	_	SC3V	0.4	-	-	1.5
93	ELU	68	STR	PERM	1.35	TD1	-	-	_	SC3V	0.4	-	-	1.5

PERM	Peso proprio mais revestimentos
SC1V	Sobrecarga 1 - 4kN verticais por todo o vao
SC2V	Sobrecarga 1 - 4kN verticais em meio vão
SC3V	Sobrecarga 1 - 4kN verticais no centro do vão
SC1H	Sobrecarga 2 - 1 kN/m Horizontal
VZ1	Vento - Direção Z sentido descendente
VZ2	Vento - Direção Z sentido ascendente
VX1	Vento - Direção X sentido positivo
VX2	Vento - Direção X sentido negativo
VY1	Vento - Direção Y sentido positivo
VY2	Vento - Direção Y sentido negativo
TU1	Temperatura Uniforme - positiva
TU2	Temperatura Uniforme - negativa
TD1	Temperatura diferencial positiva

Conceção e Projeto de uma Ponte Pedonal sobre a Via de Cintura Interna
A8. VERIFICAÇÃO AO ELU DOS MASTROS ATRAVÉS DO PROGRAMA DE CÁLCULO ROBOT

CÁLCULOS DE ESTRUCTURAS DE AÇO

NORMA: EN 1993-1:2005/AC:2009, Eurocode 3: Design of steel structures.

TIPO DE ANÁLISE: Verificação das barras

GRUPO:

BARRA: 1246 Pilar_1246 PONTO: 2 COORDENADA: x = 0.50

L = 8.0000000000 m

CARGAS:

Caso de carga dimensionante: 76 ELU51 1*1.350000000+2*1.500000000+25*0.900000000

MATERIAL:

Steel (S235) fy = 235000.000000000 kPa

PARÂMETROS DA SECÇÃO: Mastro3

h=0.450000000 m gM0=1.000000000 gM1=1.000000000 Ay=0.029050000 m2 Az=0.029050000 m2 Ax=0.045631633 m2 tw=0.035000000 m Iy=0.000989351 m4 Iz=0.000989351 m4 Ix=0.001978702 m4

Wply=0.006042167 m3 Wplz=0.006042167 m3

FORÇAS INTERNAS E RESISTÊNCIA:

N,Ed = 4292.909203299 kNMy,Ed = 14.554107459 kN*mMy,pl,Rd = 1419.909166667 kN*m Nc,Rd = 10723.433823947 kNMy,c,Rd = 1419.909166667 kN*m Nb,Rd = 5781.391203618 kN

MN,y,Rd = 1120.427067272 kN*m

Classe da secção = 1

PARÂMETOS DE ENCURVADURA LATERAL:

PARÂMETROS DE ENCURVADURA:

em relação ao eixo y:

em relação ao eixo z:

FÓRMULA DE VERIFICAÇÃO:

Control de resistência da secção:

N,Ed/Nc,Rd = 0.400329715 < 1.0000000000 (6.2.4.(1)) My,Ed/My,c,Rd = 0.010250027 < 1.0000000000 (6.2.5.(1)) My,Ed/MN,y,Rd = 0.012989786 < 1.0000000000 (6.2.9.1.(2))

Control da stabilidade global da barra:

 $Lambda, y = 108.662032472 \le Lambda, max = 210.0000000000$

Lambda,z = 108.662032472 <

Lambda,max = 210.000000000 ESTÁVEL N,Ed/(Xy*N,Rk/gM1) + kyy*My,Ed/(XLT*My,Rk/gM1) = 0.760517712 < 1.000000000 (6.3.3.(4))

 $N,Ed/(Xz^*N,Rk/gM1) + kzy^*My,Ed/(XLT^*My,Rk/gM1) = 0.755791566 < 1.000000000$ (6.3.3.(4))

Perfil correcto!!!

CÁLCULOS DE ESTRUCTURAS DE AÇO

NORMA: EN 1993-1:2005/AC:2009, Eurocode 3: Design of steel structures.

TIPO DE ANÁLISE: Verificação das barras

GRUPO:

BARRA: 1247 Pilar 1247 **PONTO:** 2 COORDENADA: x = 0.50

L = 8.000000324 m

CARGAS:

Caso de carga dimensionante: 76 ELU51 1*1.350000000+2*1.500000000+25*0.900000000

MATERIAL:

Steel (S235) fy = 235000.000000000 kPa

PARÂMETROS DA SECÇÃO: Mastro3

h=0.450000000 m gM0=1.000000000 gM1=1.000000000 Ay=0.029050000 m2 Az=0.029050000 m2 Ax=0.045631633 m2 tw=0.035000000 m Ix=0.001978702 m4

Wply=0.006042167 m3 Wplz=0.006042167 m3

FORÇAS INTERNAS E RESISTÊNCIA:

N,Ed = 2401.388129386 kN My,Ed = 14.554185819 kN*mNc.Rd = 10723.433823947 kN My,pl,Rd = 1419.909166667 kN*mNb,Rd = 5781.390873178 kN My,c,Rd = 1419.909166667 kN*m

MN,y,Rd = 1308.356749605 kN*m

Classe da secção = 1

PARÂMETOS DE ENCURVADURA LATERAL:

PARÂMETROS DE ENCURVADURA:

em relação ao eixo y:

 Ly = 16.000000649 m
 Lam_y = 1.185623783
 Lz = 16.000000649 m
 Lam_z = 1.185623783

 Lcr,y = 16.000000649 m
 Xy = 0.539136154
 Lcr,z = 16.000000649 m
 Xz = 0.539136154

 Lamy = 108.662036883
 kyy = 1.336059989
 Lamz = 108.662036883
 kzy = 0.884597427

em relação ao eixo z:

FÓRMULA DE VERIFICAÇÃO:

Control de resistência da secção:

N,Ed/Nc,Rd = 0.223938355 < 1.0000000000 (6.2.4.(1)) $My,Ed/My,c,Rd = 0.010250082 \le 1.0000000000$ (6.2.5.(1))

My,Ed/MN,y,Rd = 0.011124019 < 1.0000000000 (6.2.9.1.(2))

Control da stabilidade global da barra:

Lambda,z = 108.662036883 < Lambda,y = 108.662036883 < Lambda,max = 210.000000000

Lambda,max = 210.000000000 ESTÁVEL

 $N_{Ed}/(Xy^*N_{Rk/gM1}) + kyy^*My_{Ed}/(XLT^*My_{Rk/gM1}) = 0.429059848 < 1.000000000$ (6.3.3.(4))

N,Ed/(Xz*N,Rk/gM1) + kzy*My,Ed/(XLT*My,Rk/gM1) = 0.424432319 < 1.000000000 (6.3.3.(4))

Perfil correcto!!!

CÁLCULOS DE ESTRUCTURAS DE AÇO

NORMA: EN 1993-1:2005/AC:2009, Eurocode 3: Design of steel structures.

TIPO DE ANÁLISE: Verificação das barras

GRUPO:

BARRA: 1248 Pilar_1248 **PONTO**: 2 COORDENADA: x = 0.50

L = 8.000001740 m

CARGAS:

Caso de carga dimensionante: 79 ELU54 1*1.350000000+3*1.500000000+25*0.900000000

MATERIAL:

fy = 235000.000000000 kPa Steel (S235)

PARÂMETROS DA SECÇÃO: Mastro3

h=0.450000000 m gM0=1.000000000 gM1=1.000000000

Ay=0.029050000 m2 Az=0.029050000 m2 Iy=0.000989351 m4 Iz=0.000989351 m4 Az=0.029050000 m2 Ax=0.045631633 m2 tw=0.035000000 m Ix=0.001978702 m4

Wply=0.006042167 m3 Wplz=0.006042167 m3

FORÇAS INTERNAS E RESISTÊNCIA:

N.Ed = 3515.492560431 kN My,Ed = 14.554527475 kN*mNc,Rd = 10723.433823947 kN My,pl,Rd = 1419.909166667 kN*mNb,Rd = 5781.389432415 kN My,c,Rd = 1419.909166667 kN*m

MN,y,Rd = 1206.668768329 kN*m

Classe da secção = 1

PARÂMETOS DE ENCURVADURA LATERAL:

PARÂMETROS DE ENCURVADURA:

em relação ao eixo y:

Ly = 16.000003481 m Lam y = 1.185623992

em relação ao eixo z:

Lz = 16.000003481 m $Lam_z = 1.185623992$ $Lcr_z = 16.000003481 \text{ m}$ Xz = 0.539136020Lcr,z = 16.000003481 mLamz = 108.662056114 kzy = 1.095392144

Xz = 0.539136020

FÓRMULA DE VERIFICAÇÃO:

Control de resistência da secção:

N,Ed/Nc,Rd = 0.327832728 < 1.0000000000 (6.2.4.(1))

My,Ed/My,c,Rd = 0.010250323 < 1.0000000000 (6.2.5.(1))

My,Ed/MN,y,Rd = 0.012061742 < 1.0000000000 (6.2.9.1.(2))

Control da stabilidade global da barra:

Lambda,y = 108.662056114 < Lambda,max = 210.0000000000

Lambda,z = 108.662056114 <

Lambda,max = 210.000000000 ESTÁVEL

 $N, Ed/(Xy*N, Rk/gM1) + kyy*My, Ed/(XLT*My, Rk/gM1) = 0.624057469 < 1.000000000 \quad (6.3.3.(4))$

 $N, Ed/(Xz^*N, Rk/gM1) + kzy^*My, Ed/(XLT^*My, Rk/gM1) = 0.619298657 < 1.000000000 \quad (6.3.3.(4))$

Perfil correcto!!!