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1. Introduction

It is often the case that a domain can be idealized as a longitu-
dinally invariant medium, i.e., a structure whose cross section
remains constant along a given direction, say in direction y. For
instance, in the case of vibrations induced by moving vehicles, it
is often convenient to idealize the road, track or tunnel as a struc-
ture whose geometry is invariant in the longitudinal direction [1].
In that case, after carrying out a Fourier transform from the
Cartesian spatial coordinate y to the horizontal wavenumber ky,
the analysis of the three dimensional structure can be reduced to
a series of 2D problems. This type of analysis is referred to as a
two-and-a-half dimensional (2.5D) problem and is normally cast
in the wavenumber–frequency domain (ky;x).

Furthermore, whenever the domain under consideration is
unbounded (e.g., soil-structure interaction problems), the radiation
of waves at infinity must be accounted for. The boundary element
method (BEM) intrinsically accounts for the radiation condition
and therefore is one of the tools most commonly used in these sit-
uations. The BEM requires the availability of the so called funda-
mental solution (or Green’s functions – GF), which in the vast
majority of cases are those for a homogeneous, complete space
(i.e. the Stokes–Kelvin problem), and rarely those of layered spaces.
The reason for this is that in the 2.5D domain, the GF for homoge-
neous whole-spaces are known in analytical form [2], while the GF
for layered spaces can only be obtained via numerical methods
such as transfer matrices [3,4], stiffness matrices [5], or the thin-
layer method (TLM) [6].

Formulations for the 2.5D BEM were previously given in
Refs. [7,8] using the whole-space GF and in Ref. [9] using the GF
for layered spaces obtained via the stiffness matrix method. In this
work, we present a very efficient alternative formulation based on
the Green’s functions obtained with the TLM (2.5D BEM + TLM).
When compared with the formulations in [7,8], the proposed pro-
cedure has the enormous advantage of avoiding the discretization
of the free-surface of a half-space and of the interfaces between
material layers, because layering is considered automatically in
the definition of the GF. It accomplishes this at the expense of more
elaborate computations to obtain the GF. When compared with the
work presented in [9], the 2.5D BEM + TLM approach described
herein replaces the discrete numerical Fourier inversion in ky by
exact modal summations, which requires solving a narrowly-
banded quadratic eigenvalue problem. This circumvents the need
for an appropriate wavenumber step for kx and thus avoids the
problems of spatial periodicity, wrap-around and aliasing. Another
advantage of the 2.5D BEM + TLM is the avoidance of the numerical
integration of the Green’s functions over the boundary elements,
which is replaced by modal summations, a feature that circum-
vents the complication entailed by the singularities contained in
the GF.

This article is organized as follows: in Section 2 the TLM is
reviewed and the expressions for the calculation of the 2.5D
displacements and stresses are obtained; in Section 3 the direct
calculation of the coefficients of the boundary element matrices
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Table 1
Nodal displacements in frequency–wavenumber domain.
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is addressed; finally, in Section 4 the proposed procedure is
validated by means of some examples.

2. TLM in the 2.5D domain – Green’s functions

The TLM is an efficient semi-analytical method for the calcula-
tion of the fundamental solutions (i.e., GF) of layered media. It
consists in expressing the displacement field in terms of a finite
element expansion in the direction of layering together with ana-
lytical descriptions for the remaining directions. Though initially
it was limited to domains of finite depth, paraxial boundaries were
developed and coupled to the TLM in order to circumvent this
limitation [10]. More recently, perfectly matched layers (PML) have
been proposed and shown to be more accurate than paraxial
boundaries for the simulation of unbounded domains [11].

The TLM has been formulated in the space-frequency domain
(2D, 3D) [12] and in the wavenumber-time domain [13]. It has also
been formulated in the 2.5D domain (x; ky;x) [14], but solely in
terms of displacements elicited by applied forces, and has been
coupled to the BEM in the context of 3D axisymmetric structures
[15]. This section presents the derivation of the expressions for
the displacements, their spatial derivatives and the stresses
anywhere, both in the wavenumber domain (kx; ky;x) and in the
2.5D domain (x; ky;x). Variables with an over-bar or tilde repre-
sent field quantities in the (kx; ky;x) domain, while variables
denoted without diacritical marks represent fields in the mixed
(x; ky;x) domain.

2.1. Displacements in the wavenumber domain (kx,ky,x)

In [14], a TLM formulation is presented in which the displace-
ments elicited by various kinds of loads acting within layered
media are obtained in the (kx; ky;x) and (x; ky;x) domains. Follow-
ing that work, after discretizing a layered domain into thin-layers
and applying the principle of weighted residuals, we obtain a
matrix equation for each thin-layer of the form

P ¼ k2xAxx þ kxkyAxy þ k2yAyy þ i kxBx þ kyBy
� �þ G�x2M

� �h i
U ð1Þ

where the vectors P and U contain, respectively, the external trac-
tions pa kx; ky;x

� �
and displacements ua kx; ky;x

� �
at the nodal inter-

faces, and where the remaining boldface variables are matrices that
depend solely on the material properties of the thin-layers. These
matrices are listed in Appendix A for the case of cross-anisotropic
materials. The variables kx and ky represent the horizontal
wavenumbers in the transverse and longitudinal directions, respec-
tively, x represents the angular frequency, the index að¼ x; y; zÞ
represents the direction of the nodal displacement and/or traction,
and i ¼

ffiffiffiffiffiffiffi
�1

p
is the imaginary unit.

By means of a similarity transformation, Eq. (1) can be changed
into

~p ¼ k2xAxx þ kxkyAxy þ k2yAyy þ kx~Bx þ ky~By þ G�x2M
� �h i

~u ð2Þ

where ~p and ~u are obtained from P and U by multiplying every third
row by �i and where ~Bx and ~By are obtained from Bx and By by sim-
ply reversing the sign of every third column. Eq. (2) is advantageous
over Eq. (1) because the matrices therein are symmetric while in Eq.
(1) they are not.

After assembling the thin-layer matrices for all the thin-layers,
we obtain the global system of equations with the same configura-
tion as Eq. (2), and although it can easily be solved for ~u, we choose
to follow an alternative and more convenient approach. In fact,
the direct numerical solution of Eq. (2) for ~u (or ~p) precludes the
analytical evaluation of the inverse Fourier transforms from the
(kx; ky;x) domain to the (x; ky;x) domain, and consequently
renders the TLM an inefficient method when compared with the
stiffness matrix approach. For this reason, an alternative approach
is followed wherein we find a modal basis with which we can
calculate ~u and/or ~p through modal superposition. This procedure
enables the analytical transformation of ~u and ~p to the desired
2.5D domain, which constitutes an enormous advantage.

Without entering into lengthy details, the modal basis is found
by solving a quadratic eigenvalue problem in k of the form [14]

k2Axx þ k~Bx þ G�x2M
� �h i

/ ¼ 0 ð3Þ

Rearranging the matrices in this eigenvalue problem by degrees of
freedom (first x, then y and finally z), we observe that these matrices
attain the following structures
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ð4Þ

Because of the special structure of these matrices, the eigenvalue
problem in Eq. (3) can be decoupled into the following two
eigenvalue problems
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� �
þ k
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BT
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� �
þ Cx O

O Cz

� �� �
/x

/z

� �
¼ 0

0

� �

k2Ay þ Cy

	 

/y ¼ 0

ð5Þ

which correspond to the generalized Rayleigh and generalized Love
eigenvalue problems. The first eigenvalue problem has 2NR solu-
tions while the second has 2NL solutions, with NR and NL being
the dimension of the corresponding matrices. For the calculation
of the responses, only the solutions that correspond to eigenvalues
with negative imaginary components are considered, because only
these entail waves that carry energy away from the source. Hence
only NR solutions of the Rayleigh problem and only NL solutions
of the Love problem are considered. Based on the eigensolutions,

the displacements uðmnÞ
ab at the mth nodal interface in direction a

due to a unit load applied at the nth nodal interface in direction b
are calculated by modal superposition as listed in Table 1, with
the coefficients Kij given in Table 2.

The displacements at an interior horizontal plane of the ith
thin-layer are obtained by vertical interpolation of the nodal
values, i.e.,

uab zð Þ ¼
Xnn
j¼1

Nj zð ÞuðiÞ
abðjÞ ð6Þ

with nn being the number of nodal interfaces within each thin-layer
(nn ¼ 2 for linear expansion, nn ¼ 3 for quadratic expansion, etc.),

uðiÞ
abðjÞ the nodal displacement of the jth nodal interface of the consid-

ered thin-layer, and Nj zð Þ the corresponding shape function.



Table 2
Kernels Kij .

K1j ¼ 1
k2�k2j

K2j ¼ kxky
k2 k2�k2jð Þ

K3j ¼ k2x
k2 k2�k2jð Þ K4j ¼ k2y

k2 k2�k2jð Þ
K5j ¼ kx

kj k2�k2jð Þ K6j ¼ ky
kj k2�k2jð Þ
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2.2. Consistent nodal tractions in the wavenumber domain (kx,ky,x)

The consistent nodal tractions acting on one isolated thin-layer
(say the ith thin-layer, limited by the nodal interfaces l and m,
Fig. 1) are obtained through Eq. (2), but with ~p and ~u representing
the collection of nodal tractions and displacements of the single,
free thin-layer. Thus, assuming an external force in direction b,
the vectors ~p and ~u are

~pðiÞ ¼
~pðiÞ
ð1Þ

..

.

~pðiÞ
nnþ1ð Þ

2
6664

3
7775 ~uðiÞ ¼

~uðiÞ
ð1Þ

..

.

~uðiÞ
nnþ1ð Þ

2
6664

3
7775 ð7Þ

with ~pðiÞ
ðkÞ ¼ pðiÞ

xbðkÞ pðiÞ
ybðkÞ �ipðiÞ

zbðkÞ

n oT
being the modified nodal trac-

tions and ~uðiÞ
ðkÞ ¼ uðiÞ

xbðkÞ uðiÞ
ybðkÞ �iuðiÞ

zbðkÞ

n oT
being the modified nodal

displacements (the word ‘‘modified” refers to the multiplication by
�i).

In the ensuing and for the sake of simplicity, it will be assumed
that no external forces act at internal (i.e. intermediate) interfaces,
which exist when nn > 2. Thus, the only non-zero components of

the traction vector ~p are pðiÞ
abð1Þ and pðiÞ

ab nnð Þ. These components
correspond to the tractions that the remaining part of the domain
transmits to the current thin-layer through its upper and lower
interfaces.

After replacing in Eq. (2) the displacements by their modal
expansion as given in Table 1, we obtain the consistent tractions
expressed also in terms of a modal superposition. Hence, consider-
ing first a force in direction b ¼ x applied at the global interface n,
the nodal tractions at the ith thin-layer are obtained with
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where

CðxpÞ
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kpxK3j kx; ky
� �

0 0
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Similarly, for a load in direction b ¼ y, the consistent nodal tractions
are calculated as
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Fig. 1. Stack of thin-layers (on the left) and single thin-layer detail (on the right).
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Finally, for a load in the direction b ¼ z, the tractions are calculated
as

~pðiÞ ¼Axx

XNR
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with

CðzpÞ
jR ¼ �i

kpxK5j kx; ky
� �

0 0

0 kpxK6j kx; ky
� �

0

0 0 kpxK1jðkx; kyÞ

2
64

3
75 ð16Þ
2.3. Vertical derivatives and internal stresses in the wavenumber
domain (kx,ky,x)

In the (kx; ky;x) domain, the derivatives of the displacements
along the two horizontal directions x and y (herein termed hori-
zontal derivatives) are obtained simply by multiplying the dis-
placements by �ikx or �iky, depending on the direction x or y of
the derivatives. As for the derivatives along the vertical direction
z (herein termed vertical derivatives, with z pointing upwards),
they can be obtained by combining the nodal displacements
weighted by the derivatives of the associated shape functions.
However, since the displacement field in the vertical direction is
discrete, that procedure yields derivatives at the top and bottom
interfaces of the thin-layers that are not consistent with the nodal
tractions derived in Section 2.2, and therefore their degree of accu-
racy is inferior.

In [16], an alternative procedure for the calculation of the
derivatives is proposed that allows computing stresses with the
same degree of accuracy as the displacements. This procedure is
based on the definition of secondary interpolation functions that
are consistent with the stresses at the top and bottom interfaces
of the thin-layer. Herein, that same procedure is used to define
the vertical derivatives and subsequently the internal stresses at
the internal nodal interfaces.

Assume for now that the following quantities are already

known: displacements uðiÞ
abðjÞ at the j ¼ 1; . . . ;nnþ 1 nodal interfaces

of the ith thin-layer, and their horizontal derivatives uðiÞ
ab;xðjÞ and

uðiÞ
ab;yðjÞ; consistent tractions pðiÞ

abð1Þ and pðiÞ
ab nnð Þ at the top and bottom

nodal interfaces (a is the direction of the response and b is the
direction of the force). The tractions at the upper surface relate
to the internal stresses through

~pðiÞ
ð1Þ ¼ �stopxzb �stopyzb �irtop

zzb

n oT ð17Þ

and the tractions at the lower surface relate to the internal stresses
through

~pðiÞ
nnð Þ ¼ � �sbottomxzb

�sbottomyzb �irbottom
zzb

n oT ð18Þ

Additionally, the internal stresses relate to the derivatives of dis-
placements through

�sxzb ¼ G uxb;z þ uzb;x
� �

�syzb ¼ G uyb;z þ uzb;y
� �

rzzb ¼ k uxb;x þ uyb;y
� �þ kþ 2Gð Þuzb;z

8>>><
>>>:

ð19Þ

where G and k are the Lamé constants. Eq. (19) can be solved for the
vertical derivatives, yielding

uxb;z ¼ sxzb�Guzb;xð Þ
G

uyb;z ¼ syzb�Guzb;yð Þ
G

uzb;z ¼ rzzb�k uxb;xþuyb;yð Þ
kþ2Gð Þ

8>>>>>><
>>>>>>:

ð20Þ

We now have expressions for the displacements at each of the nn
nodal interfaces and for their vertical derivatives at the upper and
lower interfaces. With the nnþ 2 known variables, we can use Her-
mitian interpolation to find a polynomial of degree nnþ 1 that clo-
sely approximates the variation of displacements with the vertical
coordinate. For example, if we assume that the thin-layer is of quad-
ratic expansion ðnn ¼ 3Þ and that its thickness is h, then

uab zð Þ ¼ Aab þ Babzþ Cabz2 þ Dabz3 þ Eabz4 ð21Þ

uab;z zð Þ ¼ Bab þ 2Cabzþ 3Dabz2 þ 4Eabz3 ð22Þ

Aab
Bab
Cab

Dab

Eab

2
6666664

3
7777775
¼

1 0 0 0 0
1 h=2 h=2ð Þ2 h=2ð Þ3 h=2ð Þ4

1 h h2 h3 h4

0 1 0 0 0
0 1 2h 3h2 4h3

2
6666664

3
7777775

�1 uðiÞ
ab 3ð Þ

uðiÞ
ab 2ð Þ

uðiÞ
abð1Þ

uðiÞ
ab;z 3ð Þ

uðiÞ
ab;zð1Þ

2
6666666664

3
7777777775

ð23Þ

After obtaining the left-hand side of Eq. (23), the vertical derivatives
of the displacements at the nodal interfaces can be determined with
Eq. (22). With the horizontal and vertical derivatives known, the
internal stresses at all nodal interfaces are obtained through
Eq. (19).

The stresses razb zð Þ and the vertical derivatives uab;z zð Þ inside
the thin-layer can be calculated using Eq. (22) and then Eq. (19).
Nonetheless, we choose to use the original shape functions to
interpolate these variables, i.e.,
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uab;z zð Þ ¼
Xnn
j¼1

Nj zð ÞuðiÞ
ab;zðjÞ ð24Þ

razb zð Þ ¼
Xnn
j¼1

Nj zð ÞrðiÞ
azbðjÞ ð25Þ
2.4. Variable fields in the 2.5D domain (x,ky,x)

Ultimately, in the context of the 2.5D BEM, the variable fields
needed must be expressed in the (x; ky;x) domain, which is
attained by means of the inverse Fourier transform

f x; ky;x
� � ¼ 1

2p

Z þ1

�1
�f kx; ky;x
� �

e�ikxxdkx ð26Þ

In Eq. (26), f represents either the displacements, their derivatives,
the nodal tractions, or the internal stresses. Since these variables are
all given explicitly in terms of the kernels Kij defined in Table 2 (in

some cases these kernels are multiplied by kx or k
2
x ), then the inte-

gral in Eq. (26) can be evaluated analytically by means of contour
integration [17]. In the ensuing, the evaluation of the inverse Four-
ier transforms for the displacements, their derivatives, and tractions
is addressed.

In the wavenumber domain (kx; ky;x), the displacements are
obtained as explained in Table 1. Their transformation to the space
domain (x; ky;x), according to Eq. (26), requires the evaluation of
the integrals

Ið0Þij x; ky;x
� � ¼ 1

2p

Z þ1

�1
Kije�ikxxdkx ð27Þ

Closed form expressions for these integrals are given in [14] and are

reproduced in Appendix B. After determining Ið0Þij , the displacements

in uðmnÞ
ab x; ky;x
� �

are obtained by replacing in Table 1 Kij by Ið0Þij . For

example, the displacements uðmnÞ
xx is calculated with

uðmnÞ
xx ¼

XNR

j

Ið0Þ3j /
ðmÞ
xj /ðnÞ

xj þ
XNL

j

Ið0Þ4j /
ðmÞ
yj /ðnÞ

yj ð28Þ

Concerning the derivatives in the y direction, they are obtained sim-

ply by multiplying the displacements uðmnÞ
ab x; ky;x
� �

by �iky. For

instance, the derivative uðmnÞ
xx;y is calculated with

uðmnÞ
xx;y ¼ �ikyuðmnÞ

xx ð29Þ
In turn, the derivatives in the x direction require the evaluation of
the integrals

Ið1Þij x; ky;x
� � ¼ 1

2p

Z þ1

�1
kxKije�ikxxdkx ð30Þ

whose closed form expressions are also listed in Appendix B. The x-

derivatives are then obtained by replacing in Table 1 Kij by �iIð1Þij . For

example, the derivative uðmnÞ
xx;x is calculated with

uðmnÞ
xx;x ¼ �i

XNR

j

Ið1Þ3j /
ðmÞ
xj /ðnÞ

xj � i
XNL

j

I14j/
ðmÞ
yj /ðnÞ

yj ð31Þ

For the calculation of the consistent nodal tractions, besides Ið0Þij and

Ið1Þij , the integrals

Ið2Þij x; ky;x
� � ¼ 1

2p

Z þ1

�1
k2xKije�ikxxdkx ð32Þ

are also needed, and are given in Appendix B. The nodal tractions
are then obtained using Eqs. (8)–(16), but with the quantities
kpxKij in matrices CðbpÞ
jR replaced by the appropriate value of IðpÞij . For

example, for a force in the direction b ¼ z, Eq. (15) becomes

pðiÞ ¼Axx

XNR

j¼1

/ðnÞ
zj

Kðz2Þ
jR

. .
.

Kðz2Þ
jR

2
6664

3
7775

UðlÞ
Rj

..

.

UðmÞ
Rj

2
6664

3
7775

0
BBB@

1
CCCA

þ kyAxyþBx
� � XNR

j¼1

/ðnÞ
zj

Kðz1Þ
jR

. .
.

Kðz1Þ
jR

2
6664

3
7775

UðlÞ
Rj

..

.

UðmÞ
Rj

2
6664

3
7775

0
BBB@

1
CCCA

þ k2yAyyþkyByþG�x2M
	 
 XNR

j¼1

/ðnÞ
zj

Kðz0Þ
jR

. .
.

Kðz0Þ
jR

2
6664

3
7775

UðlÞ
Rj

..

.

UðmÞ
Rj

2
6664

3
7775

0
BBB@

1
CCCA

ð33Þ
where

KðzpÞ
jR ¼ �i

IðpÞ5j x; ky
� �

0 0

0 IðpÞ6j x; ky
� �

0

0 0 IðpÞ1j x; ky
� �

2
6664

3
7775 ð34Þ

The calculation of the vertical derivatives and of the internal stres-
ses in the space domain follows along exactly the same steps given
by Eqs. (20)–(25), provided that all variables in these expressions
are known in the spatial domain. This is so because the operation
for derivatives and stresses commutes with the Fourier inversion
from the wavenumber domain into the space domain. The
secondary interpolation functions must, therefore, be defined for
each different combination of (x; ky;x).
3. Direct calculation of the BEM coefficients via the TLM

The integral representation theorem in the 2.5D domain states
that [8]

jua xn; ky; zn;x
� � ¼ X

b¼x;y;z

Z
C
u�
ba x; z; xn; zn;�ky;x
� �

pn
b x; ky; z;x
� �

dC

�
X

b¼x;y;z

Z
C
pn�
ba x; z; xn; zn;�ky;x
� �

ub x; ky; z;x
� �

dC

ð35Þ
where x ¼ x; zð Þ is a general point that belongs to the boundary C of
the domain X; n is the outward normal to this boundary;
xn ¼ xn; znð Þ is a collocation point; j is 1 if xn 2 X and 0 otherwise;
a is the direction of the load applied at the collocation point;
ub . . .ð Þ is the displacement field in direction b; pn

b . . .ð Þ is the traction
field in direction b, which is defined by

pn
b . . .ð Þ ¼

X
j¼x;z

rbj . . .ð Þnj ð36Þ

with nj being the components of the outwards normal n of the
boundary; and where u�

ba . . .ð Þ and pn�
ba . . .ð Þ are the Green’s functions,

i.e., the displacements and tractions in the direction b at the point x
that belongs to an auxiliary domain (in this work, an horizontally
layered domain) induced by an impulsive point load with direction
a applied at the collocation point xn.

Since the GF present singularities at the collocation points, i.e.,
when x ! xn, Eq. (35) must be regularized. One possible regular-
ization procedure is to remove the collocation point xn from the
boundary by slightly modifying it [18]. For example, in Fig. 2
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Fig. 2. Strategies for circumventing the collocation points. (a) Smooth horizontal boundary; (b) concave corner; (c) convex corner.
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suggests possible alterations of the boundary that excludes the col-
location point.

After the application of the regularization procedure, the
boundary integral representation becomes [18]

X
b¼x;y;z

cabub xn;ky;zn;x
� �¼ X

b¼x;y;z

Z
C
u�
ba x;z;xn;zn;�ky;x
� �

pn
b x;ky;z;x
� �

dC

�
X

b¼x;y;z

Z
C
pn�
ba x;z;xn;zn;�ky;x
� �

ub x;ky;z;x
� �

dC

ð37Þ
where cab is a factor that depends on the geometry of the boundary
at the collocation point xn and on the type of auxiliary domain used
for the calculation of the GF. If the GF used are those of a homoge-
neous whole-space and if the boundary is smooth at the collocation
point (Fig. 2a), then cab ¼ 0:5dab. This value is due to the symmetry
of the GF for a homogeneous whole-space, a condition that holds
true for any load direction. For different boundary geometries and
while using GF for the homogeneous whole-space, Guiguiani [19]
and Mantic [20] describe procedures for the calculation of the factor
cab. If the auxiliary domain used for the calculation of the GF is not
homogeneous, then the identity cab ¼ 0:5dab for smooth boundaries
and the procedures presented by Guiguiani and Mantic do not
apply, and therefore different approaches for the calculation of cab
must be considered.

The boundary element method results from the discretization
of the boundary C in Eq. (37) and from the approximation of the
displacement and traction fields at the boundary. Its application
yields a system of equations of the form (see [18] for details),

Cþ Qð Þu ¼ Hp ð38Þ
in which the matrix C is block-diagonal containing the factors cab of
all of the collocation points, Q is a square matrix that collects the
coefficients Qba ijkð Þ of the form

Qba ijkð Þ ¼
Z
Cj

pn�
ba x; z; xni ; zni ;�ky;x
� �

Sjk x; zð ÞdC ð39Þ

and H is a matrix that collects the coefficients HbaðijkÞ of the form

Hba ijkð Þ ¼
Z
Cj

uba x; z; xni ; zni ;�ky;x
� �

Sjk x; zð ÞdC ð40Þ

In Eqs. (39) and (40), i represents the index of the collocation point
xni ; j represents the index of the boundary division Cj and Sjk . . .ð Þ
represents the shape function associated with the kth node of Cj.

In the following two sections, it is demonstrated that the coef-
ficients HbaðijkÞ and Qba ijkð Þ for horizontal and for vertical boundary
elements can be calculated directly with the TLM without the need
for any kind of spatial integration scheme. For each orientation of
the boundary element, it is also explained how to account for the
term cab.

3.1. Horizontal boundaries

Horizontal boundaries are defined by a constant depth. If it is
assumed that the load is applied at depth zn (nth interface of the
TLM model) and that the boundary element is at depth zm (mth
interface of the TLM model), then the integrals in Eqs. (39) and
(40) can be replaced by integrals of the form (for convenience,
the indexes i; j; k and the variables ky;x are dropped)

Hab ¼
Z
Cj

uðmnÞ
ab x� xnð ÞS xð Þdx ð41Þ

Qab ¼
Z
Cj

pðmnÞ
ab x� xnð ÞS xð Þdx ð42Þ

The variables uðmnÞ
ab in Eq. (41) are defined in Section 2 and the vari-

ables pðmnÞ
ab in Eq. (42) correspond to the components of the internal

stresses in a horizontal plane, i.e., pðmnÞ
ab ¼ �rðmnÞ

azb (the positive sign is
used when the outwards normal of the boundary faces the positive
z direction, while the negative sign is used otherwise).

In order to complete the analytical evaluation of the integrals,
Eq. (41) is first changed into a more convenient form. As seen in
Section 2.4, the fundamental displacements are obtained through
the inversion of the solutions in the wavenumber domain, i.e.,

uðmnÞ
ab xð Þ ¼ 1

2p

Z þ1

�1
uðmnÞ
ab kxð Þe�ikxxdkx ð43Þ

Assuming that the x axis is centered at the midpoint of the bound-
ary element (of total width l), after substituting Eq. (43) into Eq.
(41), the latter becomes

Hab ¼
Z l=2

�l=2

1
2p

Z þ1

�1
uðmnÞ
ab kxð Þe�ikx x�xnð ÞdkxS xð Þdx

¼ 1
2p

Z þ1

�1
uðmnÞ
ab kxð Þ

Z l=2

�l=2
S xð Þe�ikxxdx eikxxndkx ð44Þ

The Fourier transform of S xð Þ is defined by

~S kxð Þ ¼
Z þ1

�1
S xð Þe�ikxxdx ¼

Z l=2

�l=2
S xð Þe�ikxxdx ð45Þ

and after introducing this in Eq. (44) we obtain

Hab ¼ 1
2p

Z þ1

�1
uðmnÞ
ab kxð Þ~S kxð Þ eikxxndkx ð46Þ

The application of the same procedure to Eq. (42) yields
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Qab ¼
1
2p

Z þ1

�1
�rðmnÞ

azb kxð Þ~S kxð Þ eikxxndkx ð47Þ

The variable uðmnÞ
ab kxð Þ is calculated by modal superposition. If the

horizontal boundary is placed at the interface between two thin-
layers (a condition that is assumed to be true throughout the

remainder of the formulation), then rðmnÞ
azb corresponds to the consis-

tent nodal tractions at that interface and thus rðmnÞ
azb kxð Þ can also be

obtained by modal superposition – Eqs. (8)–(16). For these reasons,

if ~S kxð Þ can be expressed analytically (e.g., when S xð Þ is a polynomial
function), then Hab and Qab can also be obtained analytically by
modal superposition. This idea is explored next for
SðxÞ ¼ SjðxÞ ¼ x j; j ¼ 0;1;2, but first observe that even though

uðmnÞ
ab xð Þ and rðmnÞ

azb xð Þ become singular when x ! 0, the variables

uðmnÞ
ab kxð Þ and rðmnÞ

azb kxð Þ are finite, and therefore the values of Hab

and Qab calculated with Eqs. (46) and (47) are also finite. Hence,
when the collocation point belongs to the horizontal boundary ele-
ment, Qab already includes the factor cab. In other words, using the
proposed procedure, Eq. (35) can be used directly in place of the
regularized Eq. (37), with the term cab being automatically
accounted for.

3.1.1. Constant shape function S0(x) = 1
The Fourier transform of S0 xð Þ, according to Eq. (45), is

~S0 kxð Þ ¼
Z l=2

�l=2
e�ikxxdx ¼ � i

kx
ei

kx l
2 � e�ikx l2

	 

ð48Þ

The coefficients Hab are then obtained with

Hab ¼ 1
2p

Z þ1

�1
� i
kx

uðmnÞ
ab eikx xnþ l

2ð Þ � eikx xn� l
2ð Þh i

dkx ð49Þ

and the coefficients Qab with

Qab ¼
1
2p

Z þ1

�1
� i
kx
rðmnÞ
azb eikx xnþ l

2ð Þ � eikx xn� l
2ð Þh i

dkx ð50Þ

Defining the integrals

HðpÞ
ab xð Þ ¼ 1

2p

Z þ1

�1
kpxu

ðmnÞ
ab e�ikxxdkx ð51Þ

Q ðpÞ
ab xð Þ ¼ 1

2p

Z þ1

�1
kpxr

ðmnÞ
azb e�ikxxdkx ð52Þ

and replacing them in Eqs. (49) and (50), these become

Hab ¼ �i Hð�1Þ
ab �xn � l

2

� �
þ i Hð�1Þ

ab �xn þ l
2

� �
ð53Þ

Qab ¼ �i Q ð�1Þ
ab �xn � l

2

� �
þ i Q ð�1Þ

ab �xn þ l
2

� �
ð54Þ

In order to obtain Hð�1Þ
ab xð Þ, the integrals Ið�1Þ

ij defined by

Ið�1Þ
ij ¼ 1

2p

Z þ1

�1
k�1
x Kije�ikxxdkx ð55Þ

must be combined in a modal summation similar to the one
described in Section 2. For example, Hð�1Þ

xx xð Þ is calculated with

Hð�1Þ
xx xð Þ ¼ 1

2p

Z þ1

�1

uðmnÞ
xx

kx
e�ikxxdkx

¼
XNR

j

Ið�1Þ
3j xð Þ/ðmÞ

xj /ðnÞ
xj þ

XNL

j

Ið�1Þ
4j xð Þ /ðmÞ

yj /ðnÞ
yj ð56Þ
For the calculation of Q ð�1Þ
ab xð Þ, the integrals Ið�1Þ

ij ; Ið0Þij and Ið1Þij must be

used in Eqs. (8)–(16) in place of Kij; kxKij and k2xKij, respectively. For
example, assuming that the interested consistent nodal tractions
are those of the upper interface of a thin-layer and that b ¼ z, then

pð1Þ ¼

Q ð�1Þ
xz

Q ð�1Þ
yz

Q ð�1Þ
zz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

..

.

p nnð Þ

2
666666666666666666666666664

3
777777777777777777777777775

¼

Axx

XNR

j¼1

/ðnÞ
zj

Kðz1Þ
jR

. .
.

Kðz1Þ
jR

2
66664

3
77775

UðlÞ
Rj

..

.

UðmÞ
Rj

2
66664

3
77775

0
BBBB@

1
CCCCA

þ kyAxy þBx
� � XNR

j¼1

/ðnÞ
zj

Kðz0Þ
jR

. .
.

Kðz0Þ
jR

2
66664

3
77775

UðlÞ
Rj

..

.

UðmÞ
Rj

2
66664

3
77775

0
BBBB@

1
CCCCA

þ k2yAyy þkyBy þG�x2M
	 
 XNR

j¼1

/ðnÞ
zj

Kðz;�1Þ
jR

. .
.

Kðz;�1Þ
jR

2
66664

3
77775

UðlÞ
Rj

..

.

UðmÞ
Rj

2
66664

3
77775

0
BBBB@

1
CCCCA

ð57Þ

with KðzpÞ
jR as defined in Eq. (34). The integrals Ið�1Þ

ij ; Ið0Þij and Ið1Þij are
listed in Appendix B.

3.1.2. Linear shape function S1(x) = x
Following the procedure described in Section 3.1.1, the Fourier

transform of S1 xð Þ is

~S1 kxð Þ ¼
Z l=2

�l=2
x e�ikxxdx

¼ l
2

i
kx

ei
kx l
2 þ e�ikx l2

	 

þ 1

k2x
e�ikxl2 � ei

kx l
2

	 

ð58Þ

and thus the coefficients Hab and Qab are calculated with

Hab ¼ il
2

Hð�1Þ
ab �xn � l

2

� �
þ Hð�1Þ

ab �xn þ l
2

� �� �

þ Hð�2Þ
ab �xn þ l

2

� �
� Hð�2Þ

ab �xn � l
2

� �
ð59Þ

Qab ¼
il
2

Q ð�1Þ
ab �xn � l

2

� �
þ Q ð�1Þ

ab �xn þ l
2

� �� �

þ Q ð�2Þ
ab �xn þ l

2

� �
� Q ð�2Þ

ab �xn � l
2

� �
ð60Þ

Expressions for the evaluation of Hð�1Þ
ab xð Þ and Q ð�1Þ

ab xð Þ are given in

Section 3.1.1. In order to evaluate Hð�2Þ
ab xð Þ and Q ð�2Þ

ab xð Þ, the integrals

Ið�2Þ
ij ; Ið�1Þ

ij and Ið0Þij must be used in the modal summations explained

in Sections 2.1 and 2.2 in place of Kij; kxKij and k2xKij, respectively.

The expression for Ið�2Þ
ij is

Ið�2Þ
ij ¼ 1

2p

Z þ1

�1
k�2
x Kije�ikxxdkx ð61Þ

The integrals Ið�2Þ
ij ; Ið�1Þ

ij and Ið0Þij are listed in Appendix B.

3.1.3. Quadratic shape function S2(x) = x2

The Fourier transform of S2 is

~S2 kxð Þ ¼
Z l=2

�l=2
x2 e�ikxxdx ¼ � l2i

4kx
ei

kx l
2 � e�ikx l2

	 


þ l

k2x
ei

kx l
2 þ e�ikx l2

	 

þ 2i

k3x
ei

kx l
2 � e�ikx l2

	 

ð62Þ
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ξ

upper thin-layer

lower thin-layer

boundary

deflected boundary

Fig. 3. Deflection of the horizontal boundary (red line) when the collocation point is
at an edge of the element. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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and so the coefficients Hab and Qab are obtained with

Hab ¼ � il2

4
Hð�1Þ
ab �xn � l

2

� �
� Hð�1Þ

ab �xn þ l
2

� �� �

þ l Hð�2Þ
ab �xn � l

2

� �
þ Hð�2Þ

ab �xn þ l
2

� �� �

þ 2i Hð�3Þ
ab �xn � l

2

� �
� Hð�3Þ

ab �xn þ l
2

� �� �
ð63Þ
Qab ¼ � il2

4
Q ð�1Þ

ab �xn � l
2

� �
� Q ð�1Þ

ab �xn þ l
2

� �� �

þ l Q ð�2Þ
ab �xn � l

2

� �
þ Q ð�2Þ

ab �xn þ l
2

� �� �

þ 2i Q ð�3Þ
ab �xn � l

2

� �
� Q ð�3Þ

ab �xn þ l
2

� �� �
ð64Þ

Expressions for Hð�1Þ
ab xð Þ; Hð�2Þ

ab xð Þ; Q ð�1Þ
ab xð Þ and Q ð�2Þ

ab xð Þ are already

given in Sections 3.1.1 and 3.1.2. To evaluate Hð�3Þ
ab xð Þ and Q ð�3Þ

ab xð Þ,
the integrals Ið�3Þ

ij ; Ið�2Þ
ij and Ið�1Þ

ij must be used in the modal summa-

tions explained in Sections 2.1 and 2.2 in place of Kij; kxKij and k2xKij,

respectively. The expression for Ið�3Þ
ij is

Ið�3Þ
ij ¼ 1

2p

Z þ1

�1
k�3
x Kije�ikxxdkx ð65Þ

The integrals Ið�3Þ
ij ; Ið�2Þ

ij and Ið�1Þ
ij are listed in Appendix B.
3.1.4. Final considerations concerning horizontal boundaries
The calculation of the coefficients Hab involves only the compo-

nents of the modal shapes at the elevation of the load and at the
elevation of the receiver. By contrast, the calculation of the coeffi-
cients Qab involves the components of all TLM nodes that compose
the thin-layer delimiting the boundary element. Since the bound-
ary elements are placed at the interface between two consecutive
thin-layers, a decision is required as to whether to consider the
upper or the lower thin-layer.

When the collocation point is not contained by the boundary
element, it is immaterial which thin-layer is used. On the other
hand, when the collocation point is contained in the boundary ele-
ment, the value of Qab depends on the thin-layer selected for the
evaluation. The rule used in this work is that if the outward normal
faces up, the thin-layer located below the boundary is employed in
the calculation of Qab, otherwise the thin-layer above is used. By
following this procedure, collocation points on horizontal bound-
aries are circumvented as depicted in Fig. 2.

It is important to note that, according to this procedure, when a
collocation point is at an edge of a boundary element (xn ¼ �l=2),
then the coefficient Qab is calculated considering that the boundary
is distorted as shown in Fig. 3. This aspect is important for the
treatment of corners, i.e., points where horizontal boundaries meet
vertical boundaries (Fig. 2b and c).
3.2. Vertical boundaries

Vertical boundaries are defined by a constant horizontal coordi-
nate xBE. If it is assumed that the load is applied at the depth zl (lth
interface of the TLM model) and that the boundary element is
placed between depths zm and zn (mth and nth interfaces of the
TLM model), then the integrals in Eqs. (39) and (40) can be
replaced by integrals of the form (for convenience, the indexes
i; j; k and the variables ky; x are dropped)

Hab ¼
Xn
p¼m

Z
uðplÞ
ab xBE � xnð ÞNp zð ÞS zð Þdz ð66Þ

Qab ¼
Xn
p¼m

Z
pðplÞ
ab xBE � xnð ÞNp zð ÞS zð Þdz ð67Þ

In these equations, the factors uðplÞ
ab xBE � xnð ÞNp zð Þ and

pðplÞ
ab xBE � xnð ÞNp zð Þ represent the vertically interpolated displace-

ment and traction fields, with Np zð Þ being the shape function asso-
ciated with the pth interface.

Since uðplÞ
ab xBE � xnð Þ and pðplÞ

ab xBE � xnð Þ are nodal values and there-
fore do not depend on the depth z, Eqs. (66) and (67) can be
replaced by

Hab ¼
Xn
p¼m

uðplÞ
ab xBE � xnð Þ

Z
Np zð ÞS zð Þdz ð68Þ

Qab ¼
Xn
p¼m

pðplÞ
ab xBE � xnð Þ

Z
Np zð ÞS zð Þdz ð69Þ

Thus, only the integrals of the form
R
Np zð ÞS zð Þdz need to be evalu-

ated. Since Np zð Þ and S zð Þ are both polynomial functions, these inte-
grals can be evaluated in closed form.

In Eq. (68), uðplÞ
ab represents the nodal values of the displace-

ments, which are calculated as explained in Section 2.4, and in

Eq. (69), the tractions pðplÞ
ab correspond to the internal stresses in a

vertical plane, i.e.,

pðplÞ
ab ¼ �rðplÞ

axb ð70Þ

(the positive sign must be used if the outwards normal faces the
positive x direction and the negative sign otherwise). The compo-
nents of the internal stresses are calculated with

rðplÞ
xxb ¼ k uðplÞ

xb;x þ uðplÞ
yb;y þ uðplÞ

zb;z

	 

þ 2GuðplÞ

xb;x

rðplÞ
yxb ¼ G uðplÞ

xb;y þ uðplÞ
yb;x

	 

rðplÞ

zxb ¼ G uðplÞ
xb;z þ uðplÞ

zb;x

	 


8>>>><
>>>>:

ð71Þ

where the derivatives (both horizontal and vertical) are calculated
as already explained in Sections 2.3 and 2.4.

As a final note, since the displacements are interpolated in the
vertical direction using polynomial functions, the singular behavior
of the GF is not captured. Hence, when the collocation point lies
within the vertical boundary element, in the calculation of Qab

the term cab is not accounted for. Nonetheless, since the boundary
elements are vertically oriented and the GF are symmetric with
respect to vertical planes, the resulting value for the missing term
is cab ¼ 0:5dab. In this way, for nodes that belong to vertical bound-
ary elements and that do not correspond to corners, the term
cab ¼ 0:5dab must be added to the diagonal of Q associated with
the node. When the node corresponds to a corner, two situations
occur:
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1. Concave corner (Fig. 2b) – in this case, because the horizontal
boundary element already accounts for the quarter circle of
the deflected boundary (Fig. 3), then the factor cab must only
account for the remaining semi-circle, and so cab ¼ 0:5dab;

2. Convex corner (Fig. 2c) – the horizontal boundary element
already accounts for the quarter circle of the deflected bound-
ary (Fig. 3), and so the factor cab is null.

4. Validation examples

In the present section, the dynamic compliances of a tunnel are
computed and compared with the corresponding values obtained
with the 2.5D finite element method (FEM). The tunnel is massless,
has rigid cross section, and is placed inside a horizontally layered
domain. The geometry and properties of the problem are illus-
trated in Fig. 4.

Since the cross section of the tunnel is rigid, the displacements
of the walls of the tunnel can be described as functions of the
translations and rotations of the tunnel, i.e.,

ux x;zð Þ
uy x;zð Þ
uz x;zð Þ

2
64

3
75¼NUTunnel N¼

1 0 0 0 z 0
0 1 0 �z 0 x

0 0 1 0 �x 0

2
64

3
75 UTunnel¼

uTunnel
x

uTunnel
y

uTunnel
z

hTunnelx

hTunnely

hTunnelz

2
66666666664

3
77777777775

ð72Þ
On the other hand, the pressures that the layered domain transmits
to the walls of the tunnel induce at the center of the tunnel forces
and moments that are calculated with

FTunnel ¼ Fx Fy Fz Mx My Mz½ �T ¼
Z
C
NT

px x; zð Þ
py x; zð Þ
pz x; zð Þ

2
64

3
75dC ð73Þ

where C represents the boundary of the tunnel.
After discretizing into boundary elements and N boundary

nodes the surface of the layered domain that is in contact with
the tunnel, the nodal displacements uj at the boundary are
obtained with

u1

..

.

uN

2
664

3
775 ¼ NUU

Tunnel NU ¼
N x1; z1ð Þ

..

.

N xN ; zNð Þ

2
664

3
775 ð74Þ
, , ,u u u uGρ ν ξ

1 1 1 1, , ,Gρ ν ξ

2 2 2 2, , ,Gρ ν ξ

, , ,l l l lGρ ν ξ

1H

2H

2H

L

x

z
y

2H

Fig. 4. Square tunnel inside a horizontally layered domain.
The forces FTunnel are obtained from the boundary pressures pj

through

FTunnel¼NP

p1

..

.

pN

2
664

3
775NP¼

R
CN

T x;zð ÞS1 x;zð ÞdC ��� RCNT x;zð ÞSN x;zð ÞdC
h i

ð75Þ
with Sj x; zð Þ being the shape function associated with the jth bound-
ary node.

Replacing Eqs. (74) and (75) in Eq. (38) yields

NPH
�1 Cþ Qð ÞNU

	 

UTunnel ¼ FTunnel ð76Þ

and so the compliance matrix is the 6 by 6 matrix F obtained with

F ¼ NPH
�1 Cþ Qð ÞNU

	 
�1
ð77Þ

In the subsequent examples, the components of the compliance
matrix F are evaluated using the methodology explained earlier in
this work. The tunnel is given the cross section H ¼ L ¼ 1 ½m� and
each edge of the tunnel is divided into 5 boundary elements of
quadratic expansion (3 nodes per boundary element). The total
number of nodes is then N ¼ 40. The excitation frequency is
x ¼ 2p ½rad=s� and the wavenumbers ky range from 0 to
6p ½rad=m� (301 wavenumbers).

To validate the results obtained with the 2.5D BEM, the compli-
ance matrices are also calculated using the FEM (the 2.5D FEM pro-
cedure used in this work was implemented by the authors). The
corresponding model consists of an elastic region surrounded by
PMLs, whose objective is to absorb outgoing waves (Fig. 5a). The
thickness of each PML is two times the characteristic wavelength
(taken as the shear wavelength of the stiffest layer), and the corre-
sponding absorption profile is defined as explained in Ref. [21]. The
mesh used to describe the domain is regular, consisting of rectan-
gular shaped elements with 9 nodes each (usually, 2D quadrilateral
elements of quadratic interpolation contain 8 nodes; here, a node
is added at the center of the element). The mesh refinement is such
that in the elastic region there are 20 elements (40 nodes) per
wavelength and that in PMLs there are 10 elements (20 nodes)
per wavelength. The mesh structure is represented in Fig. 5b
(depending on the example being solved, the upper and/or lower
PMLs may be excluded from the analysis).

4.1. Homogeneous whole-space

The material properties of the whole-space are: mass density
qu ¼ q1 ¼ q2 ¼ ql ¼ 1 ½kg=m3�; shear modulus Gu ¼ G1 ¼ G2 ¼
Gl ¼ 1 ½Pa�; Poisson’s ratio mu ¼ m1 ¼ m2 ¼ ml ¼ 0:25; hysteretic
damping ratio nu ¼ n1 ¼ n2 ¼ nl ¼ 1%. The TLM model consists of
the 4 macro-layers identified in Fig. 4, where the upper and lower
semi-infinite elements are modeled with PMLs (with parameters
g ¼ 2; X ¼ 8; N ¼ 10; m ¼ 2; see [11] for the definition of these
variables), and the middle layers satisfy H1 ¼ H2 ¼ 2½m� and are
divided into 40 thin-layers of quadratic expansion ðnn ¼ 3Þ.

Due to symmetry conditions, only the components
f xx; f yy; f zz; f hxhx ; f hyhy ; f hzhz ; f xhz ¼ �f hzx and f zhx ¼ �f hxz are non-
zero. Also, due to the geometry of the problem,
f xx ¼ f zz; f hxhx ¼ f hzhz and f xhz ¼ f zhx . Hence, considering only the five
compliance components f xx; f yy; f hxhx ; f hyhy and f xhz it is possible to
describe the entire system. In Fig. 6, the five components of the
compliance matrix obtained with the proposed procedure (solid
lines) are compared with the results obtained with the finite ele-
ment method (black dots). Blue is used for the representation of
the real part, while red is used for the imaginary part [color on
the online version only].



(a) (b)

Elastic region

PML

Direction of absorption 
of PML

Fig. 5. (a) Scheme of the FEM + PML model. (b) FEM mesh.
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Fig. 6 shows that the two approaches yield virtually identical
results, leading to the conclusion that both procedures are correct.
It can also be observed that the in-plane components (f xx; f hxhx and
f xhz ) present singularities at ky ¼ kS ¼ x=CS ¼ 2p.
It should be noted that, because in this example the soil is a
homogenous, infinite space, it follows that the classical BEM
that uses the GF for that whole space has a clear advantage over
the use of the BEM + TLM. However, this problem of very simple
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geometry is used solely for validation purposes. In the next exam-
ples, the use of whole-space GF requires the discretization not only
of the edges of the tunnel but also of the free-surfaces and of the
interfaces between different layers, and now the TLM offers clear
advantages inasmuch as these interfaces need not be discretized.
4.2. Homogeneous layer free in space

The free layer consists on the two intermediate macro layers
depicted in Fig. 4 ðH1 ¼ H2 ¼ 2 ½m�Þ. The material properties of
the free layer are the same of the whole-space considered in the
previous example. The TLM model is similar to the one used
therein, but with the upper and lower PMLs excluded. Again, due
to symmetry conditions, only the components f xx; f yy; f zz; f hxhx ;
f hyhy ; f hzhz ; f xhz ¼ �f hzx and f zhx ¼ �f hxz do not vanish. However,

the identities f xx ¼ f zz; f hxhx ¼ f hzhz and f xhz ¼ f zhx do not hold, and
so a total of eight components of the compliance matrix are needed
to describe the system. Fig. 7 shows the eight components of
the compliance matrix obtained with the proposed methodology
and with the FEM. Once again, the results obtained with the two
procedures match perfectly.
4.3. Homogeneous half-space

The material properties of the homogeneous half-space are the
same as in the previous case. The TLM model differs from the
model in Section 4.1 in that the upper PML is excluded. In this case
12 distinct components are needed to define the compliance
matrix, whose structure is

F ¼

f xx 0 0 0 f xhy f xhz
0 f yy f yz f yhx 0 0
0 �f yz f zz f zhx 0 0
0 f yhx �f zhx f hxhx 0 0
f xhy 0 0 0 f hyhy f hyhz
�f xhz 0 0 0 �f hyhz f hzhz

2
6666666664

3
7777777775

ð78Þ

The diagonal components of F computed with the proposed proce-
dure and with FEM are depicted in Fig. 8 and the off-diagonal com-
ponents are shown in Fig. 9. A good agreement is reached, even
though, for ky > 2p, nearly imperceptible discrepancies can begin
to be observed in Fig. 8 for the diagonal terms.

4.4. Layered half-space

The case of a non-homogeneous half-space is considered next.
The properties of the layers, based on Fig. 4, are the following:

qu¼0;Gu¼0 ðtheupper half�spacedoes not exist in this caseÞ

q1 ¼ 1:2 ½kg=m3�;G1 ¼ 1:0 ½Pa�; m1 ¼ 0:25; n1 ¼ 1%;H1 ¼ 2 ½m�

q2 ¼ 1:3 ½kg=m3�;G2 ¼ 2:0 ½Pa�; m2 ¼ 0:3; n2 ¼ 1%;H2 ¼ 2 ½m�

ql ¼ q2;Gl ¼ G2; ml ¼ m2; nl ¼ n2



0 1 2 3

-0.2

-0.1

0

0.1

0.2

0 1 2 3

- 0.05

0

0.05

0 1 2 3

-0.2
-0.1

0
0.1
0.2

0 1 2 3
-0.4

-0.2

0

0.2

0.4

0 1 2 3
-0.2

-0.1

0

0.1

0.2

0 1 2 3
- 0.4

-0.2

0

0.2

0.4

2yk π 2yk π

2yk π 2yk π

2yk π 2yk π

xxf yyf

zzf x x
fθ θ

z z
fθ θ

y y
fθ θ

Fig. 8. Tunnel compliances (diagonal components) for the case of a homogeneous half-space. Solid lines = 2.5D BEM (real part – blue; imaginary part – red). Black dots = FEM.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

0 1 2 3

- 0.01

0

0.01

0 1 2 3

-0.2

-0.1

0

0.1

0 1 2 3- 0.01

- 0.005

0

0.005

0.01

0 1 2 3
-0.05

0

0.05

0 1 2 3
-0.2

0

0.2

0.4

0 1 2 3

- 0.02

0

0.02

2yk π 2yk π

2yk π 2yk π

2yk π 2yk π

yx
f θ zx

f θ

yzf xy
f θ

xz
f θ y z

fθ θ

Fig. 9. Tunnel compliances (off-diagonal components) for the case of a homogeneous half-space. Solid lines = 2.5D BEM (real part – blue; imaginary part – red). Black
dots = FEM. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

12 J.M. de Oliveira Barbosa et al. / Computers and Structures 161 (2015) 1–16
Each of the physical layers is modeled with 40 thin-layers based on
a quadratic expansion ðnn ¼ 3Þ. The lower half-space is modeled
with PMLs with the same parameters used in Section 4.1
ðg ¼ 2;X ¼ 8;N ¼ 10;m ¼ 2Þ.
As in the case of the half-space, the 12 components given by Eq.
(78) are needed in order to define the compliance matrix F. These
compliances, obtained both with the proposed procedure and with
the FEM, are plotted in Fig. 10 for the diagonal components and in
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Fig. 11 for the off-diagonal components. Again, the agreement
between the proposed method and the FEM is very good. It can
be concluded from this example that the BEM based on the TLM
GF can correctly simulate horizontally layered domains without
the need to discretize the interfaces between the layers, as is
necessary in the standard BEM. This is a huge advantage.
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5. Concluding remarks

In this article we presented a BEM procedure based on the TLM
Green’s functions. For horizontal boundary elements, the BEM
coefficients are calculated directly based on a modal superposition,
rendering accurate results and accounting for the singularities of
the GF. For vertical boundary elements, the vertically interpolated
GF are integrated analytically but the singularities are not
accounted for: to account for the singular behavior of the GF, we
need to add à posteriori the term cab, which is equal to 0:5dab in
smooth vertical boundaries or concave corners and is null in
convex corners.

The proposed methodology is limited to horizontal and vertical
boundary elements. If the actual boundary should contain inclined
surfaces, such geometry can be achieved by filling the irregular vol-
ume with finite elements. Other remarks concerning the compati-
bility between the TLM model and the BEM mesh are listed below:

1. The horizontal boundary elements are placed at the interface
between two thin-layers and not inside a thin-layer.

2. The extremities of vertical boundary elements correspond to
interfaces between thin-layers and not to intermediate eleva-
tions within thin-layers.

3. If there are boundary nodes inside vertical boundary elements
(in constant or quadratic boundary elements, for example),
these nodes must be located at the interface between thin-
layers.

4. It is not recommended that the horizontal boundary elements
be smaller than the thickness of the thin-layers. Likewise, it is
not recommended that the distance between vertical boundary
elements at the same level be smaller than the thickness of the
thin-layers.

To the casual reader, the methodology presented in this article
may seem complicated if not intimidating, but make no mistake, it
is extremely powerful, inasmuch as it allows consideration of lay-
ered soils without the need to discretize the material interfaces
(something which is not possible with the classical BEM based
on the theoretical whole-space GF) and without the need to evalu-
ate inverse Fourier transforms from kx to x (which again is not pos-
sible in formulations based on GF obtained with stiffness/transfer
matrices). In addition, the proposed methodology turns out to
more user friendly than other procedures based on the stiffness/
transfer matrices GFs since the definition of a proper wavenumber
sample kx is replaced by the subdivision of the layered domain into
small thin-layers, a task that is far simple. For these reasons, it is
believed that the methodology expounded herein constitutes an
effective and fast alternative to assess the dynamic interaction of
structures embedded in layered soils.
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Appendix A. Thin layer matrices for cross anisotropy

The constitutive matrix D and the matrices Dab are defined by
D ¼

kþ 2G k kt 0 0 0

k kþ 2G kt 0 0 0

kt kt Dt 0 0 0

0 0 0 Gt 0 0

0 0 0 0 Gt 0

0 0 0 0 0 G

2
666666666666664

3
777777777777775

G > 0

Gt > 0

kþ G > 0

kþ Gð ÞDt > k2t

Dxx ¼
kþ 2G 0 0

0 G 0

0 0 Gt

2
6664

3
7775 Dxy ¼

0 k 0

G 0 0

0 0 0

2
6664

3
7775 Dxz ¼

0 0 kt

0 0 0

Gt 0 0

2
6664

3
7775

Dyx ¼
0 G 0

k 0 0

0 0 0

2
6664

3
7775 Dyy ¼

G 0 0

0 kþ 2G 0

0 0 Gt

2
6664

3
7775 Dyz ¼

0 0 0

0 0 kt

0 Gt 0

2
6664

3
7775

Dzx ¼
0 0 Gt

0 0 0

kt 0 0

2
6664

3
7775 Dzy ¼

0 0 0

0 0 Gt

0 kt 0

2
6664

3
7775 Dzz ¼

Gt 0 0

0 Gt 0

0 0 Dt

2
6664

3
7775
A.1. Linear expansion

The shape functions for this case are

N1 ¼ f N2 ¼ 1� f f ¼ z=h

where z ¼ 0 at the bottom surface of the thin-layer and z ¼ h at the
top surface. The thin-layer matrices are

M ¼ qh
6

2I I

I 2I

" #

Aaa ¼ h
6

2Daa Daa

Daa 2Daa

" #
a ¼ x; yð Þ

Axy ¼ h
6

2 Dxy þ Dyx
� �

Dxy þ Dyx
� �

Dxy þ Dyx
� �

2 Dxy þ Dyx
� �

2
4

3
5

Ba ¼ 1
2

�Daz Daz

�Daz Daz

" #
�

�Dza �Dza

Dza Dza

" # !
a ¼ x; yð Þ

G ¼ 1
h

Dzz �Dzz

�Dzz Dzz

" #

After assembling the elementary matrix Ba, the elementary matrix
~Ba is obtained by changing the sign of every third column of Ba.

A.2. Quadratic expansion

The shape functions are now

N1 ¼ f 2f� 1ð Þ N2 ¼ 4f 1� fð Þ N3 ¼ 1� fð Þ 1� 2fð Þ
f ¼ z=h

where again z ¼ 0 at the bottom surface of the thin-layer and z ¼ h
at its top surface. The thin-layer matrices are
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M ¼ qh
30

4I 2I �I
2I 16I 2I
�I 2I 4I

2
64

3
75

Aaa ¼ h
30

4Daa 2Daa �Daa

2Daa 16Daa 2Daa

�Daa 2Daa 4Daa

2
64

3
75 a ¼ x; yð Þ

Axy ¼ h
30

4 Dxy þ Dyx
� �

2 Dxy þ Dyx
� � � Dxy þ Dyx

� �
2 Dxy þ Dyx
� �

16 Dxy þ Dyx
� �

2 Dxy þ Dyx
� �

� Dxy þ Dyx
� �

2 Dxy þ Dyx
� �

4 Dxy þ Dyx
� �

2
64

3
75

Ba¼1
6

3Daz �2Daz Daz

2Daz 0 �2Daz

�Daz 2Daz �3Daz

2
6664

3
7775�

3Dza 2Dza �Dza

�2Dza 0 2Dza

Dza �2Dza �3Dza

2
6664

3
7775

0
BBB@

1
CCCA a¼x;yð Þ

G ¼ 1
3h

7Dzz �8Dzz Dzz

�8Dzz 16Dzz �8Dzz

Dzz �8Dzz 7Dzz

2
6664

3
7775

Again, after assembling the elementary matrix Ba, the elementary
matrix ~Ba is obtained by changing the sign of every third column
of Ba.

Appendix B. List of integrals

Closed form expressions for Ið�3Þ
ij Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2j � k2y

q
< 0

� �
Ið�3Þ
1j ¼ 1

2p

R þ1
�1 k�3

x K1je�i kxxdkx ffiffiffiffiffiffiffiffip !

¼ � sign xð Þ

2i k2y�k2jð Þ
x2
2 þ 1

k2y�k2j
� e

�i k2
j
�k2y xj j

k2y�k2j

Ið�3Þ
2j ¼ 1

2p

R þ1
�1 k�3

x K2je�i kxxdkx

¼ 1
2ky

� xj j
k2y�k2j

þ e� kyxj j
kyj jk2j þ i

k2y e
�i
ffiffiffiffiffiffiffiffi
k2
j
�k2y

p
xj j

k2j k2y�k2jð Þ ffiffiffiffiffiffiffiffiffiffi
k2j �k2y

p
( )

Ið�3Þ
3j ¼ 1

2p

R þ1
�1 k�3

x K3je�i kxxdkx

¼ sign xð Þ
2ik2y

1
k2y�k2j

þ e� ky xj j
k2j

� k2y e
�i
ffiffiffiffiffiffiffiffi
k2
j
�k2y

p
xj j

k2j k2y�k2jð Þ

( )

Ið�3Þ
4j ¼ 1

2p

R þ1
�1 k�3

x K4je�i kxxdkx

¼ � sign xð Þ
2i

x2

2 k2y�k2jð Þ þ
2k2y�k2j
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might possibly assign the wrong sign to the result.
Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.compstruc.2015.
08.012.These data include MOL files and InChiKeys of the most
important compounds described in this article.
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