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A new method for the dynamic analysis of the vertical vehicle–structure interaction is presented. The
vehicle and structure systems can be discretized with various types of finite elements and may have
any degree of complexity. The equations of both systems are complemented with additional compatibil-
ity equations to ensure contact between the vehicles and the structure. The equations of motion and the
compatibility equations form a single system that is solved directly, thus avoiding the iterative procedure
used by other authors to satisfy the compatibility between the vehicle and structure. For large structural
systems the proposed method is usually more efficient than those that frequently update and factorize
the system matrix. Some numerical examples have shown that the proposed formulation is accurate
and efficient.
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1. Introduction

Research on the dynamic analysis of the vehicle–structure
interaction is an important issue in civil engineering. A state-of-
the-art review on the analysis of the vehicle–structure interaction
is briefly presented here. Additional information on this subject
can be found in Diana and Cheli [1], Knothe and Grassie [2] and
Popp et al. [3].

The dynamic analysis of the vehicle–structure interaction can
be performed in the frequency domain or in the time domain.
The frequency domain methods require less computational effort
but may impose some restrictions when dealing with non-periodic
effects and nonlinear structural models [3]. There are several non-
linearities in the vehicle–structure system that should be consid-
ered, such as the nonlinear contact, the state-dependent rail pads
and ballast/subgrade properties, and the loss of contact between
sleepers and ballast [4,5]. In these cases, the time domain methods
are more appropriate.

There are several studies that emphasize the importance of con-
sidering vertical vehicle–structure interaction. Zhai and Cai [6]
concluded that the irregularities on the surfaces of wheel and rail
induce severe dynamic disturbances. As a consequence, large im-
pact forces occur, being the principal cause of damage to the
wheels, rails and other vehicle and track components. The forma-
tion and development of wheel and rail irregularities and the in-
crease of the dynamic interaction forces are interrelated. Yau
ll rights reserved.

x: +351 22 508 1446.
. Neves), alvaro@fe.up.pt
et al. [7] pointed out that the riding comfort of rail cars moving
over simple beams can be considerably affected by the rail irregu-
larity, ballast stiffness, suspension stiffness and suspension damp-
ing. Therefore, the design of high-speed railway bridges may be
governed by serviceability limit states, such as the riding comfort,
rather than by ultimate limit states.

The simulation of the vehicle–structure system requires the
coupling of two independent meshes. The dynamic equilibrium is
defined by two sets of equations of motion, one for the vehicle
and the other for the structure. Both sets of equations can be solved
by an iterative procedure to ensure the coupling of the two subsys-
tems [8–10]. These methods may require a considerable computa-
tional effort when dealing with a large number of contact points
due to a probable slow rate of convergence.

Other approaches for solving the two sets of equations of
motion are based on condensation techniques that eliminate the
degrees of freedom of the vehicle at the element level. Yang and
Yau [11] used the Newmark method to reduce the vehicle equa-
tions to equivalent stiffness equations, which are then condensed
to those of the bridge elements in contact. The derived element
ignores the pitching effect of the vehicle, which may significantly
affect its response. Yang et al. [12] presented an improved vehi-
cle–bridge interaction element to overcome this drawback. Yang
and Wu [13] developed a procedure capable of simulating vehicles
of varying complexity. Since the position of each contact point
changes over time, the system matrix used by these methods
[11–13] is usually time–dependent and must be updated and
factorized at each time step. This procedure may demand a consid-
erable computational effort.

The main objective of this paper is to present an accurate,
efficient and simple method for problems in two or three
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Nomenclature

a0 amplitude of the irregularity function
C viscous damping matrix
E Young’s modulus
F load vector
g acceleration of gravity
I moment of inertia of the cross section
kv spring stiffness
K stiffness matrix
L beam length
m mass per unit length
M mass matrix
Mn generalized mass of the nth mode
Mv suspended mass
P external load vector
qn normal coordinate of the nth mode
r irregularities between vehicle and structure
R support reactions
u displacement vector
v speed of the vehicle
X contact forces acting on the vehicle

Y contact forces acting on the structure
z absolute displacement of the mass
k wavelength of the irregularity function
m Poisson’s ratio
n sprung mass distance from the left end of the beam
/n mode shape of the nth mode
xn natural frequency of the nth mode

Subscripts
F includes I and X type d.o.f.
I unconstrained nodal d.o.f.
P prescribed nodal d.o.f.
X contact nodal d.o.f. of the vehicle
Y contact d.o.f. in a non-nodal point of the surface of the

structure

Superscripts
c current time step (t + Dt)
p previous time step (t)

Structure

Vehicle

(a)

v t( )

r1

r2

(b)

X1

X2

Y1 Y2

Fig. 1. Vehicle–structure system: (a) schematic illustration and (b) free body
diagram.

S.G.M. Neves et al. / Engineering Structures 34 (2012) 414–420 415
dimensions, which is capable of analyzing the vertical dynamic
interaction between vehicles and structures, especially at low fre-
quencies. In the developed procedure the subsystems that model
the structure and the vehicles may have any degree of complexity
and can be discretized with various types of finite elements, such
as beams, shells and solids.

The proposed method is used to analyze the contact between
nodes of the vehicles and the surface of the structure. At each in-
stant, the equations of motion of the structure and vehicles are
complemented with additional compatibility equations that relate
nodal displacements of the vehicles to the displacements of the
corresponding points on the surface of the structure, with no slid-
ing or separation being allowed. The irregularities at the contact
interface can be considered in the compatibility equations. The
equations of motion and the compatibility equations form a single
system with displacements and contact forces as unknowns. This
system is solved directly, thus avoiding the iterative procedure
used by other authors to satisfy the compatibility equations [8–
10]. The proposed formulation is referred to as the direct method
and has been implemented in FEMIX, which is a general purpose
finite element computer program [14].

2. Vehicle–structure interaction

A general vehicle model moving at speed v(t) over a simple
structure is represented in Fig. 1. The vehicle and structure subsys-
tems can be modeled with various types of finite elements, such as
beams, shells and solids.

Fig. 1 shows the contact forces acting on the vehicle (Xi), the
contact forces acting on the structure (Yi) and the irregularities be-
tween the contact points of the vehicle and the structure (ri). The
degrees of freedom (d.o.f.) are grouped according to the classifica-
tion presented in Table 1.

2.1. Formulation of the equations of motion

Based on the a method [15], the equations of motion of the
vehicle–structure system can be expressed as

M €uc þ ð1þ aÞ C _uc � a C _up þ ð1þ aÞ K uc � a K up

¼ ð1þ aÞ F c � a Fp ð1Þ
where M is the mass matrix, C is the viscous damping matrix, K is
the stiffness matrix, F is the load vector, u are the displacements
and a is the parameter of the a method. Adopting a = 0, this algo-
rithm reduces to the Newmark method and, for other values,
numerical dissipation is introduced in the higher modes. The super-
script c indicates the current time step (t + Dt) and the superscript p
indicates the previous one (t).

According to the adopted d.o.f. classification (see Table 1), the
matrices and vectors of Eq. (1) are partitioned into the form

MFF MFP

MPF MPP

� �
€uc

F

€uc
P

� �
þð1þaÞ

CFF CFP

CPF CPP

� �
_uc

F

_uc
P

� �
�a

CFF CFP

CPF CPP

� �
_up

F

_up
P

" #

þð1þaÞ
KFF KFP

KPF KPP

� �
uc

F

uc
P

� �
�a

KFF KFP

KPF KPP

� �
up

F

up
P

" #

¼ð1þaÞ
Fc

F

Fc
P

" #
�a

Fp
F

Fp
P

" #
ð2Þ

In the present paper, the implementation of the contact
between nodes of the vehicles and points on the surface of the
structure is described. Each Y type d.o.f. corresponds to a d.o.f. at



Table 1
Classification of the degrees of freedom (d.o.f.).

I Unconstrained nodal d.o.f. (nI = number of I type d.o.f.)
X Contact nodal d.o.f. of the vehicle (nX = number of X type d.o.f.)
F Includes I and X type d.o.f. (nF = nI + nX)
Y Contact d.o.f. in a non-nodal point of the surface of the structure (nY = nX)
P Prescribed nodal d.o.f. (nP = number of P type d.o.f.)
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a point located on the surface of the structure and is not associated
with any node. For this reason, this type of d.o.f. is not included in
Eq. (2).

According to the adopted d.o.f. classification (see Table 1), the
load vector can be expressed as

FI ¼ PI þ DIY YY ð3Þ
FX ¼ PX þ IXX XX ð4Þ
FP ¼ PP þ DPY YY þ RP ð5Þ

where PI, PX and PP are the external load vectors, RP are the support
reactions, and IXX is the identity matrix. Each element Dij of the
matrices DIY and DPY corresponds to the equivalent nodal load in
d.o.f. i due to a unit load applied in d.o.f. j. The X type d.o.f. are lo-
cated in nodal points of the vehicle and the Y type d.o.f. are located
in non-nodal points of the surface of the structure (see Fig. 1).

According to Fig. 1,

XX þ YY ¼ 0 ð6Þ

being the number of Y type d.o.f. equal to the number of X type d.o.f.
Substituting Eq. (6) into Eqs. (3) and (5) and replacing the subscript
Y with X yields

FI ¼ PI � DIX XX ð7Þ

FP ¼ PP � DPX XX þ RP ð8Þ

Eqs. (4) and (7) can be written in the form

FF ¼ PF þ GFX XX ð9Þ

where

FF ¼
FI

FX

� �
PF ¼

PI

PX

� �
ð10Þ

and

GFX ¼
�DIX

IXX

� �
ð11Þ

Substituting Eqs. (8) and (9) into Eq. (2), and rearranging, the
following equations are obtained

MFF €uc
F þð1þaÞCFF _uc

F þð1þaÞKFF uc
F �ð1þaÞGFX Xc

X ¼ð1þaÞPc
F �aPp

F

�aGFX Xp
X�MFP €uc

P�ð1þaÞCFP _uc
PþaCFF _up

F þaCFP _up
P�ð1þaÞKFP uc

P

þaKFF up
F þaKFP up

P

ð12Þ

Rc
P ¼ a

1þa Rp
P�Pc

Pþ a
1þa Pp

PþDPX Xc
X� a

1þa DPX Xp
Xþ 1

1þa MPF €uc
F þ 1

1þa MPP €uc
P

þCPF _uc
F þCPP _uc

P� a
1þa CPF _up

F � a
1þa CPP _up

PþKPF uc
F þKPP uc

P� a
1þa KPF up

F

� a
1þa KPP up

P

ð13Þ

The support reactions Rc
P given by Eq. (13) can be calculated

after solving the system of linear equations defined by Eq. (12)
Eq. (12) can be written in the form

MFF €uc
F þ ð1þ aÞ CFF _uc

F þ ð1þ aÞ KFF uc
F � ð1þ aÞ GFX Xc

X ¼ FF ð14Þ
where

FF ¼ð1þaÞPc
F �aPp

F �aGFX Xp
X�MFP €uc

P�ð1þaÞCFP _uc
PþaCFF _up

F þaCFP _up
P

�ð1þaÞKFP uc
PþaKFF up

F þaKFP up
P

ð15Þ

In the Newmark method [16] the velocity and displacement at
the current time step (t + Dt) are approximated with

_uc
F ¼ _up

F þ 1� cð Þ €up
F þ c €uc

F

� �
Dt ð16Þ

uc
F ¼ up

F þ _up
F Dt þ 1

2
� b

� �
€up

F þ b €uc
F

� �
Dt2 ð17Þ

These equations are also valid for the a method. The parameters
c and b influence the stability and accuracy of the Newmark and a
methods. Solving Eq. (17) for €uc

F gives

€uc
F ¼

1
bDt2 uc

F �
1

bDt2 up
F �

1
bDt

_up
F �

1
2b
� 1

� �
€up

F ð18Þ

Substituting €uc
F given by Eq. (18) into Eq. (16) yields

_uc
F ¼ _up

F þ 1� cð Þ Dt €up
F

þ c Dt
1

bDt2 uc
F �

1
bDt2 up

F �
1

bDt
_up

F �
1

2b
� 1

� �
€up

F

� �
ð19Þ

This equation can be written in the form

_uc
F ¼

c
bDt

uc
F �

c
bDt

up
F þ 1� c

b

� �
_up

F þ Dt 1� c
2b

� �
€up

F ð20Þ

Substituting Eqs. (18) and (20) into Eq. (14), and rearranging the
terms, yields

�KFF uc
F � ð1þ aÞ GFX Xc

X ¼ FF ð21Þ

where

�KFF ¼ A0 MFF þ ð1þ aÞ A1 CFF þ ð1þ aÞ KFF ð22Þ

FF ¼ FF þMFF A0 up
F þ A2 _up

F þ A3 €up
F

� �
þ 1þ að Þ CFF A1 up

F þ A4 _up
F þ A5 €up

F

� �
ð23Þ

A0 ¼
1

bDt2 A1 ¼
c

bDt
A2 ¼

1
bDt

A3 ¼
1

2b
� 1 A4 ¼

c
b
� 1 A5 ¼ Dt

c
2b
� 1

� �
ð24Þ

In matrix notation, Eq. (21) may be expressed as

�KFF
�GFX

� � uc
F

Xc
X

� �
¼ FF

� �
ð25Þ

where

�GFX ¼ � 1þ að Þ GFX ð26Þ
2.2. Formulation of the compatibility equations

At each instant, the equations of motion of the structure and
vehicles are complemented with additional compatibility equa-
tions to ensure the contact between the nodes of the vehicles
and the surface of the structure. The subtraction between a dis-
placement of a node of the vehicle and the corresponding displace-
ment of the surface of the structure must be equal to the
irregularity at the contact interface, with no sliding or separation
being allowed (see Fig. 1). The compatibility equations for the cur-
rent time step (t + Dt) can be expressed as

uc
X � uc

Y ¼ rc
X ð27Þ

where
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uc
Y ¼ EYI uc

I þ EYP uc
P ð28Þ

In this equation each element Eij of the matrices EYI and EYP cor-
responds to the displacement at an internal d.o.f. i due to a unit dis-
placement at nodal d.o.f. j. Since the number of Y type d.o.f. is equal
to the number of X type d.o.f., in Eq. (28) the subscript Y is replaced
with the subscript X, yielding

uc
Y ¼ EXI uc

I þ EXP uc
P ð29Þ

Substituting Eq. (29) into Eq. (27) and rearranging leads to

�EXI uc
I þ uc

X ¼ rc
X þ EXP uc

P ð30Þ

According to the adopted classification of d.o.f. (see Table 1), Eq.
(30) can be written in the form

HXF uc
F ¼ rc

X þ EXP uc
P ð31Þ

where

uF ¼
uI

uX

� �
ð32Þ

and

HXF ¼ �EXI IXX½ � ð33Þ

Premultiplying Eq. (31) by �ð1þ aÞ gives

�ð1þ aÞ HXF uc
F ¼ �ð1þ aÞ rc

X � ð1þ aÞ EXP uc
P ð34Þ
v

z

EIm  ,

Mv

kv

ξ
L

Fig. 2. Simply supported beam subjected to a moving sprung mass.
2.3. Complete system of equations

Eqs. (25) and (34) can be expressed in matrix form leading to
the following complete system of linear equations

�KFF
�GFX

�HXF 0

" #
uc

F

Xc
X

� �
¼

�FF

�rX

" #
ð35Þ

in which

�HXF ¼ �ð1þ aÞ HXF ð36Þ

�rX ¼ �ð1þ aÞ rc
X � ð1þ aÞ EXP uc

P ð37Þ

The symmetry of the coefficient matrix (35) can be demon-
strated using the Betti’s theorem.

Since the time required to solve the system of linear equations
(35) may represent a large percentage of the total solution time
[17], the efficiency of the solver is very important. The present
method uses an efficient and stable block factorization algorithm
(see Appendix A) that takes into account the specific properties
of each block, namely, symmetry, positive definiteness and
bandwidth.

In Eq. (35) the coefficient matrix is composed of the stiffness
matrix �KFF and three additional blocks �GFX ; �HXF and 0. When com-
pared with other procedures [11–13], the solution of the system
requires the additional matrix operations (A.5), (A.6), (A.7),
(A.11), (A.12) and part of (A.13) (see Appendix A). For large struc-
tural systems, where nF and nX are usually of the order of tens of
thousands and tens, respectively, of all the additional operations
only the time required by (A.5) is significant when compared with
the total solution time.

In general, the effective stiffness matrix �KFF remains constant
during a linear analysis or has to be updated and factorized only at
certain times during a nonlinear analysis. Since in the direct method
only the additional blocks of the coefficient matrix (35) are modified,
further factorizations (A.4) are avoided. Since, for large structural
systems, the additional forward substitutions (A.5) require less com-
putational effort than the additional factorizations (A.4), the direct
method can be considerably more efficient than those that need to
factorize the stiffness matrix at every time step [11–13].

3. Numerical examples and verification

In this section, two numerical examples are used to verify the
accuracy and efficiency of the direct method and the associated
computer program. The first example consists of a simply sup-
ported beam subjected to a single moving sprung mass and the
second consists of the same beam subjected to 50 moving sprung
masses. In both examples, the results obtained with the direct
method are compared with semi-analytical solutions.

3.1. Simply supported beam subjected to one moving sprung mass

A simply supported beam subjected to a moving sprung mass is
illustrated in Fig. 2, where n is the sprung mass distance from the
left end and z is the absolute displacement of the mass. The prop-
erties of the system correspond to those adopted by Yang and Yau
[11], being the beam length L = 25.0 m and the geometrical and
mechanical properties the following: Young’s modulus E = 2.87
GPa, Poisson’s ratio m = 0.2, moment of inertia I = 2.90 m4, mass
per unit length m = 2303 kg m�1, suspended mass Mv = 5750 kg
and spring stiffness kv = 1595 kN m�1. The first natural frequency
of the beam is x1 = 30.02 rad s�1, the natural frequency of the
spring-mass system is xv = 16.66 rad s�1 and the mass ratio is
Mv/(mL) = 0.1. The sprung mass moves at a constant speed
v = 100 km h�1.

By neglecting the damping effect, the shear deformation and the
rotary inertia, the nth modal equation of motion governing the
transverse vibration of a simply supported beam can be expressed
as [18]

€qnðtÞ þx2
n qnðtÞ þ

dkv /nðnÞ
P1

m¼1/mðnÞqmðtÞ
Mn

� dkv /nðnÞz
Mn

¼ dMv g /nðnÞ
Mn

ð38Þ

In this equation qn(t) is the normal coordinate of the nth mode,
being xn the natural frequency, /n the mode shape and Mn the gen-
eralized mass. The parameter d assumes the value one if
0 6 n 6 L, and zero otherwise (see Fig. 2), and g is the accelera-
tion of gravity. Since z is measured from the neutral spring posi-
tion, the term Mv g must be included.

The governing equation of motion of the sprung mass is given
by

Mv €zþ kv z�
X1
m¼1

/mðnÞ qmðtÞ
" #

¼ 0 ð39Þ

The computer program FEMIX 4.0 [14] was used to perform the
dynamic finite element analysis. The following parameters for the
a method are considered: Dt = 0.001 s, b = 0.25, c = 0.5 and a = 0.
The structure is discretized with 50 beam elements and the total
number of time steps is 900. The semi-analytical solution of Eqs.
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Fig. 4. Vertical acceleration at the midpoint of the beam.
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Fig. 5. Vertical displacement of the sprung mass.
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Fig. 6. Vertical acceleration of the sprung mass.
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(38) and (39) is obtained considering the contribution of the first
twenty modes of vibration, using the same integration method
and parameters.

The semi-analytical solutions for the vertical displacement and
acceleration at the midpoint of the beam and the corresponding fi-
nite element approximations based on the direct method are plot-
ted in Figs. 3 and 4.

The dynamic responses of the sprung mass, in terms of vertical
displacement and acceleration, are shown in Figs. 5 and 6.

The results obtained with the proposed formulation perfectly
match the corresponding semi-analytical solutions. The compari-
son between the results obtained and those published by Yang
and Yau [11] shows that the present inclusion of additional modes
of vibration leads to a better agreement, especially for the case of
the sprung mass response.

3.2. Simply supported beam subjected to 50 moving sprung masses

The beam described in Section 3.1 is now subjected to 50
sprung masses moving at a constant speed v = 47.7 km h�1. The
distance between masses is 3.0 m, being Mv and kv unaltered. A
simple sinusoidal function defined by Eq. (40) is considered for
the validation of the effects of irregularities at the contact
interface.

r ðnÞ ¼ a 0 sin
2pn

k

� �
ð40Þ

In Eq. (40), a0 is the amplitude (0.5 mm) and k is the wavelength
(5.0 m) of the irregularity. The wavelength chosen is one fifth of
the span length. The speed of the sprung masses and the wave-
length of the irregularity are such that the frequency of excitation
is equal to the natural frequency of the spring-mass system.

For the case of several moving sprung masses, Eqs. (38) and (39)
become

€qnðtÞ þx 2
n qnðtÞ þ

XNv

i¼1

di kv i /nðniÞ
P1

m¼1/mðniÞqmðtÞ
Mn

�
XNv

i¼1

di kv i /nðniÞzi

Mn
¼
XNv

i¼1

di ðMvi g � kvi riÞ/nðniÞ
Mn

ð41Þ

Mvi €zi þ kvi zi � ri �
X1

m¼1
/mðniÞ qmðtÞ

h i
¼ 0 ð42Þ

being Nv the number of sprung masses.
The parameters used in the dynamic finite element analysis and

in the semi-analytical solution of Eqs. (41) and (42) are the same as
those used in the previous example. The total number of time steps
is now 14000.
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Fig. 3. Vertical displacement at the midpoint of the beam.
The semi-analytical solutions for the vertical displacement and
acceleration of the first sprung mass over the time interval [0,3] (s)
and the corresponding finite element approximations based on the
direct method are plotted in Figs. 7 and 8.

The vertical displacement and acceleration of the last sprung
mass over the time interval [11,14](s) are shown in Figs. 9 and 10.

The results obtained with the direct method show a very good
agreement with the corresponding semi-analytical solutions.

In order to test the efficiency of the direct method, the beam
analyzed in this section is now discretized with 10000 8-node solid
elements (10 � 10 � 100) and has 36597 unconstrained d.o.f. This
beam has a rectangular cross section of width b = 2.2272 m and
height h = 2.5 m (see Fig. 11). The parameters used in the previous
analysis remain unchanged.
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Fig. 7. Vertical displacement of the first sprung mass.
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Fig. 8. Vertical acceleration of the first sprung mass.
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Fig. 9. Vertical displacement of the last sprung mass.
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Fig. 10. Vertical acceleration of the last sprung mass.

Fig. 11. Simply supported beam modeled with three-dimensional solid elements.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−15

−10

−5

0

5

10

15

Time (s)

D
is

pl
ac

em
en

t (
m

m
)

Direct method
Semi−analytical solution

Fig. 12. Vertical displacement of the first sprung mass.
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Fig. 13. Vertical displacement of the last sprung mass.
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The vertical displacement of the first sprung mass over the time
interval [0,3] (s) is shown in Fig. 12.

The vertical displacement of the last sprung mass over the time
interval [11,14](s) is plotted in Fig. 13.

The results obtained with the proposed method show a good
agreement with the corresponding semi-analytical solution. The
slight differences are due to the fact that the semi-analytical solu-
tion neglects the shear deformation and rotary inertia whereas the
finite element model accounts for such effects.

A workstation with an Intel Core i7-860 processor running at
2.80 GHz was used to perform the calculations. Using a single core,
the execution time is 10572 s. According to the authors’ experience
this result is very satisfactory.
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5. Conclusions

An accurate, efficient and simple method for analyzing the ver-
tical interaction between vehicles and structure has been devel-
oped. The vehicles and structures can be discretized with
complex meshes composed of various types of finite elements.

The equations of motion of the vehicles and structure are com-
bined into a single system that is solved directly, thus avoiding the
iterative procedure used by other methods to satisfy the compati-
bility of displacements. Generally, iterative methods are less accu-
rate and may even diverge. For the case of large structural systems
the proposed method is usually more efficient than those that need
to frequently update and factorize the system matrix. The imple-
mentation of the direct method in a finite element computer pro-
gram is straightforward for the reason that only the contact
algorithm needs to be implemented and no additional finite ele-
ments have to be developed.

The accuracy and efficiency of the direct method has been con-
firmed using two numerical examples. An excellent agreement be-
tween the results obtained with the proposed method and the
corresponding semi-analytical solutions is observed.

The step-by-step integration procedure presented in this paper
can be generalized to the case of a nonlinear analysis by modifying
the equation of motion into an incremental form.
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Appendix A. Block factorization

The block factorization of the system of linear equations (35) is
presented below using the following notation

A11 AT
21

A21 0

" #
x1

x2

� �
¼

b1

b2

� �
ðA:1Þ

and

A ¼ A11 AT
21

A21 0

" #
ðA:2Þ

It is assumed that A11 is a symmetric and positive definite
submatrix and AT

21 has full rank. With these assumptions matrix
A admits the following L DLT factorization without pivoting [19].

A11 AT
21

A21 0

" #
¼

L11 0
L21 L22

� �
D11 0
0 D22

� �
LT

11 LT
21

0 LT
22

" #
ðA:3Þ

where L11 and L22 are unit lower triangular submatrices, D11 is a po-
sitive definite diagonal submatrix, and D22 is a negative definite
diagonal submatrix. By equating the corresponding blocks in Eq.
(A.3) the following relations are obtained

A11 ¼ L11 D11 LT
11 ðA:4Þ

A21 ¼ L21 D11 LT
11 ðA:5Þ

�A22 ¼ L22 D22 LT
22 ðA:6Þ

where
�A22 ¼ �L21 D11 LT
21 ðA:7Þ

Therefore, the components of the right hand side of Eq. (A.3) can
be obtained by factorization of A11, formation of L21 by forward
substitution and factorization of �A22 .

The solution of the system of linear equations can be obtained
by the following two steps

L11 0
L21 L22

� �
y1

y2

� �
¼

b1

b2

� �
ðA:8Þ

LT
11 LT

21

0 LT
22

" #
x1

x2

� �
¼

D�1
11 0

0 D�1
22

" #
y1

y2

� �
ðA:9Þ

The vectors y1 and y2 are obtained by forward substitution

L11 y1 ¼ b1 ðA:10Þ

L22 y2 ¼ b2 � L21 y1 ðA:11Þ

and the solution of the system (x1 and x2) is obtained by back-
substitution

LT
22 x2 ¼ D�1

22 y2 ðA:12Þ

LT
11 x1 ¼ D�1

11 y1 � LT
21x2 ðA:13Þ
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