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This article presents an accurate, efficient and stable algorithm to analyze the nonlinear vertical
vehicle–structure interaction. The governing equilibrium equations of the vehicle and structure are
complemented with additional constraint equations that relate the displacements of the vehicle with
the corresponding displacements of the structure. These equations form a single system, with displace-
ments and contact forces as unknowns, that is solved using an optimized block factorization algorithm.
Due to the nonlinear nature of contact, an incremental formulation based on the Newton method is
adopted. The vehicles, track and structure are modeled using finite elements to take into account all
the significant deformations. The numerical example presented clearly demonstrates the accuracy and
computational efficiency of the proposed method.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The development of efficient and robust algorithms that can
accurately analyze the nonlinear vehicle-structure interaction is
still an important issue, especially due to the increase of the
corresponding operating speeds.

A vehicle-structure interaction problem is considerably more
complex than a typical structural dynamics problem due to the rel-
ative movement between the two subsystems and the associated
constraint equations relating the vehicle and structure displace-
ments. In a significant number of studies available in the literature
about the vehicle–structure interaction, the structure and vehicles
are modeled as rigid multibody systems [1,2]. Other authors, such
as Antolín et al. [3] and Tanabe et al. [4], proposed formulations
that additionally take into account the deformation of the struc-
ture. Neves et al. [5] modeled the vehicles and structure using
finite elements, thus considering the deformation of both systems.

When the vehicle and structure are considered as a single sys-
tem, the forces acting on the contact interface are internal forces.
Since the vehicle moves relatively to the structure, to avoid calcu-
lating and assembling the element matrices at each time step Yang
and Wu [6] proposed a new contact element based on a condensa-
tion technique that eliminates the degrees of freedom at the
contact interface. However, since the matrices of these elements
depend on the position of the contact points, the global stiffness
matrix is time-dependent and must be updated and factorized at
each time step. This procedure may demand a considerable
computational effort.

When the vehicle and structure are treated as separate systems,
two different approaches can be adopted: variational formulations
that consider an additional term in the energy of the system can be
used to impose the constraints [7], or the contact forces can be
considered explicitly and treated as externally applied loads, being
the equilibrium of all forces acting on the contact interface
established directly.

In the methods described in [8–11] the contact forces are con-
sidered explicitly but are not treated as unknowns of the governing
equilibrium equations. An iterative procedure is used to ensure the
coupling between the two subsystems. These methods may exhibit
a slow rate of convergence, especially when unilateral contact is
considered or a large number of contact points are required. To
overcome these limitations, Neves et al. [5] developed an accurate,
efficient and robust algorithm to analyze the vertical vehicle–
structure interaction, referred to as the direct method, in which
the governing equilibrium equations of the vehicle and structure
are complemented with additional constraint equations that relate
the displacements of the contact nodes of the vehicle with the
corresponding nodal displacements of the structure, with no
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separation being allowed. These equations form a single system,
with displacements and contact forces as unknowns, that is solved
directly using an optimized block factorization algorithm. The
Lagrange multiplier method and the direct method are equivalent
and lead to identical systems of linear equations. The main advan-
tage of the direct equilibrium of forces, when compared with the
variational formulations, is a better understanding of the physical
meaning of the contact forces, which is particularly important in
complex problems such as the vehicle–structure interaction.

In the present article a search algorithm is used to detect which
elements are in contact, being the constraints imposed when con-
tact occurs. The time integration is performed using the a method
since it provides numerical dissipation in the higher modes while
maintaining second-order accuracy [12]. The proposed methodol-
ogy is implemented in MATLAB [13]. The vehicles and structure
are modeled with ANSYS [14], being their structural matrices
imported by MATLAB.

2. Contact and target elements

When studying the contact between two bodies, one conven-
tionally has a contact surface, and the other a target surface
(see Fig. 1). A two-dimensional node-to-segment contact element
is used in the present formulation.

The direct method [5] introduces additional variables in the
system to impose the contact conditions, whereas in the penalty
method no additional variables are required. Increasing values of
the penalty parameter lead to more accurate solutions, but the
coefficient matrix might become ill-conditioned. In railway
engineering the number of contact points is usually small when
compared with the total size of the problem. For this reason,
the use of the direct method leads to a small additional computa-
tional cost but has the advantage of avoiding ill-conditioned
systems.

In the formulation proposed in [5] the contact constraint equa-
tions are imposed using the direct method, with no separation
being allowed. In the present formulation a search algorithm is
used to detect which elements are in contact, being the constraints
imposed when contact occurs. Since in the present formulation
only the frictionless contact is considered, the constraint equations
are purely geometrical and relate the displacements of the contact
node with the displacements of the corresponding target element.

Fig. 2 shows the two-dimensional node-to-segment contact
element implemented in the present formulation and the local
coordinate system (n1, n2, n3) of the contact pair. The n2 axis always
points towards the contact node, being the two elements separated
by an initial gap g. The forces acting at the contact interface are
denoted by X and the superscripts CE and TE indicate contact
and target elements, respectively.

According to Newton’s third law, the forces acting at the contact
interface must be of equal magnitude and opposite direction, i.e.,

XCE þ XTE ¼ 0 ð1Þ
Tar
surfa

Fig. 1. Contact p
The displacement vector of an arbitrary point is defined by two
translations, vn1 and vn2 , and a rotation hn3 about the n3 axis. Since
this type of contact element neglects the tangential forces and
moments transmitted across the contact interface, the contact
constraint equations only relate the displacement vn2 of the
contact node with the corresponding displacement of the auxiliary
point k. Each constraint equation is defined in the local coordinate
system of the contact pair and comprises the non-penetration
condition for the normal direction. These equations are given by

vCE � vTE � �gþ r ð2Þ

where r are the irregularities between the contact and target
elements. The gaps are always positive and a positive irregularity
implies an increase of the distance between the contact and target
elements (see Fig. 2).

3. Equations of motion

3.1. Force equilibrium

The a method is an implicit time integration scheme that is
generally accurate and stable [12]. Assuming that the applied loads
are deformation-independent and that the nodal point forces
corresponding to the internal element stresses may depend
nonlinearly on the nodal point displacements, the equations of
motion of the vehicle–structure system given in [5] may be
rewritten in the form

MatþDt þ C½ð1þ aÞ _atþDt � a _at � þ ð1þ aÞRtþDt � aRt

¼ ð1þ aÞFtþDt � aFt ð3Þ

where M is the mass matrix, C is the viscous damping matrix, R are
the nodal forces corresponding to the internal element stresses, F
are the externally applied nodal loads and a are the nodal displace-
ments. The superscripts t and t + Dt indicate the previous and
current time steps, respectively.

To solve Eq. (3) let the F type degrees of freedom (d.o.f.)
represent the free nodal d.o.f., whose values are unknown, and
let the P type d.o.f. represent the prescribed nodal d.o.f., whose
values are known. Thus, the load vector can be expressed as

FF ¼ PF þ DCE
FXXCE þ DTE

FXXTE ð4Þ

FP ¼ PP þ DCE
PXXCE þ DTE

PXXTE þ S ð5Þ

where P corresponds to the externally applied nodal loads whose
values are known and S are the support reactions, whose values
are unknown. Each matrix D relates the contact forces, defined in
the local coordinate system of the respective contact pair, with
the nodal forces defined in the global coordinate system (see Fig. 2).

Substituting Eq. (1) into Eqs. (4) and (5) leads to

FF ¼ PF þ DFXX ð6Þ

FP ¼ PP þ DPXXþ S ð7Þ
get
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Fig. 2. Node-to-segment contact element: (a) forces and (b) displacements at the contact interface.
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where

X ¼ XCE ð8Þ

DFX ¼ DCE
FX � DTE

FX ð9Þ

DPX ¼ DCE
PX � DTE

PX ð10Þ

Substituting Eqs. (6) and (7) into Eq. (3), and partitioning into F
and P type d.o.f., gives

MFF MFP

MPF MPP

" #
atþDt

F

atþDt
P

" #
þ

CFF CFP

CPF CPP

" #
ð1þaÞ

_atþDt
F

_atþDt
P

" #
�a

_at
F

_at
P

" #" #

þð1þaÞ
RtþDt

F

RtþDt
P

" #
�a

Rt
F

Rt
P

" #
¼ð1þaÞ

PtþDt
F þDtþDt

FX XtþDt

PtþDt
P þDtþDt

PX XtþDtþStþDt

" #

�a
Pt

F þDt
FXXt

Pt
PþDt

PXXtþSt

" #
ð11Þ

Transferring the unknowns to the left-hand side leads to

MFF €atþDt
F þ ð1þ aÞCFF _atþDt

F þ ð1þ aÞRtþDt
F � ð1þ aÞDtþDt

FX XtþDt ¼ FF

ð12Þ

and

StþDt ¼ �PtþDt
P � DtþDt

PX XtþDt þ 1
1þ a

MPF atþDt
F þMPPatþDt

P

� �
þ CPF _atþDt

F þ CPP _atþDt
P þ RtþDt

P

þ a
1þ a

St þ Pt
P þ Dt

PXXt � CPF _at
F � CPP _at

P � Rt
P

� �
ð13Þ

where

FF ¼ ð1þ aÞPtþDt
F � aPt

F � aDt
FXXt �MFPatþDt

P � ð1þ aÞCFP _atþDt
P

þ a CFF _at
F þ CFP _at

P

� �
þ aRt

F ð14Þ
3.2. Incremental formulation for nonlinear analysis

Since the present problem is nonlinear, Eq. (12) is rewritten in
the form

w atþDt
F ;XtþDt

� �
¼ 0 ð15Þ

where w is the residual force vector, given by
w atþDt
F ;XtþDt

� �
¼FF �MFF€atþDt

F � ð1þ aÞCFF _atþDt
F � ð1þ aÞRtþDt

F

þ ð1þ aÞDtþDt
FX XtþDt ð16Þ

The nodal velocities and accelerations depend on the nodal dis-
placements and, for this reason, are not independent unknowns. In
the a method the velocity and acceleration at the current time step
are approximated with

_atþDt ¼ c
bDt
ðatþDt � atÞ þ 1� c

b

� �
_at þ Dt 1� c

2b

� �
at ð17Þ

atþDt ¼ 1
bDt2 ða

tþDt � atÞ � 1
bDt

_at � 1
2b
� 1

� �
at ð18Þ

where b and c are parameters that control the stability and accuracy
of the method.

An iterative scheme based on the Newton method [15] is used
to solve Eq. (15). Assuming that the solution at the ith iteration
has been previously evaluated and neglecting second and higher
order terms, the Taylor series for w about atþDt;i

F ;XtþDt;i
� �

is given
by

w atþDt;iþ1
F ;XtþDt;iþ1

� �
¼ w atþDt;i

F ;XtþDt;i
� �

þ @w

@atþDt
F

����
ðatþDt;i

F ;XtþDt;iÞ

" #
atþDt;iþ1

F � atþDt;i
F

� �

þ @w

@XtþDt

����
ðatþDt;i

F ;XtþDt;iÞ

" #
XtþDt;iþ1 � XtþDt;i
� �

ð19Þ

Substituting Eqs. (16)–(18) into Eq. (19), and assuming that the
residual force vector at iteration i + 1 fulfils the condition given by
Eq. (15), leads to

w atþDt;i
F ;XtþDt;i

� �

þ � 1
bDt2 MFF � ð1þ aÞ c

bDt
CFF � ð1þ aÞ @RF

@atþDt
F

����
atþDt;i

F

" #" #

� atþDt;iþ1
F � atþDt;i

F

� �
þ ð1þ aÞDtþDt;i

FX XtþDt;iþ1 � XtþDt;i
� �

¼ 0 ð20Þ

Eq. (20) can be rewritten as

KFFDaiþ1
F � ð1þ aÞDtþDt;i

FX DXiþ1 ¼ w atþDt;i
F ;XtþDt;i

� �
ð21Þ
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where KFF is the current effective stiffness matrix defined by

KFF ¼
1

bDt2 MFF þ ð1þ aÞ c
bDt

CFF þ ð1þ aÞ @RF

@atþDt
F

����
atþDt;i

F

" #
ð22Þ

and

Daiþ1
F ¼ atþDt;iþ1

F � atþDt;i
F ð23Þ

DXiþ1 ¼ XtþDt;iþ1 � XtþDt;i ð24Þ

In matrix notation, Eq. (21) can be expressed as

KFF DFX

� � Daiþ1
F

DXiþ1

" #
¼ w atþDt;i

F ;XtþDt;i
� �

ð25Þ

being

DFX ¼ �ð1þ aÞDtþDt;i
FX ð26Þ

After the evaluation of the solution at iteration i + 1, the current
residual force vector is calculated using Eq. (16). The iteration
scheme continues until the condition���w atþDt;iþ1

F ;XtþDt;iþ1
� ���� ���������PtþDt

F

��� ������ � e ð27Þ

is fulfilled, being e a specified tolerance.

4. Contact constraint equations

When contact occurs, the non-penetration condition given by
Eq. (2) is fulfilled if

vCE � vTE ¼ �gþ r ð28Þ

If a contact node is not in contact with any target element, the
corresponding constraint equation is not considered.

The displacements of the contact nodes (see Fig. 2) are given by

vCE ¼ HCE
XFatþDt;iþ1

F þHCE
XPatþDt

P ð29Þ

where each transformation matrix H transforms the displacements
of the contact nodes from the global coordinate system to the local
coordinate system of the contact pair. The displacements of the
auxiliary points of the target elements are given by

vTE ¼ HTE
XFatþDt;iþ1

F þHTE
XPatþDt

P ð30Þ

where each transformation matrix H relates the nodal displace-
ments of the target elements, defined in the global coordinate
system, with the displacements of the auxiliary points defined in
the local coordinate system of each contact pair.

Substituting Eqs. (29) and (30) into Eq. (28) yields

HXFatþDt;iþ1
F ¼ �gþ r�HXPatþDt

P ð31Þ

where

HXF ¼ HCE
XF �HTE

XF ð32Þ

HXP ¼ HCE
XP �HTE

XP ð33Þ

Substituting Eq. (23) into Eq. (31) leads to

HXFDaiþ1
F ¼ �gþ r�HXPatþDt

P �HXF atþDt;i
F ð34Þ

Multiplying Eq. (34) by �(1 + a) gives

HXFDaiþ1
F ¼ �g ð35Þ

where

HXF ¼ �ð1þ aÞHXF ð36Þ
and

�g ¼ �ð1þ aÞ �gþ r�HXPatþDt
P �HXFatþDt;i

F

� �
ð37Þ
5. Contact algorithm

The incremental formulation of the equations of motion of the
vehicle–structure system, presented in Section 3, is applicable to
either linear or nonlinear analyses. These equations and the
contact constraints presented in Section 4 form a complete system
whose unknowns are incremental nodal displacements and
contact forces. Eqs. (25) and (35) can be expressed in matrix form
leading to the following system of equations

K�
FF D�

FX

H�
XF 0

" #
Daiþ1

F

DXiþ1

" #
¼ w atþDt;i

F ;XtþDt;i
� �

�g

" #
ð38Þ

Using Betti’s theorem, it can be demonstrated that the matrix in
Eq. (38) is symmetric. Due to space limitations the corresponding
proof is not presented here.

The efficiency of the algorithm used for solving the system of
equations is critical. The present methodology uses an efficient
and stable block factorization algorithm proposed in [5] that takes
into account the specific properties of each block, namely, symme-
try, positive definiteness and bandwidth. The Cholesky factoriza-
tion is also implemented, since for large systems of equations it
is generally more efficient than the LDLT factorization [16].

A brief summary of the nonlinear dynamic analysis algorithm is
presented in Table 1.

6. Numerical example

In order to validate the accuracy and efficiency of the proposed
methodology a numerical example consisting of two simply sup-
ported spans subjected to four moving sprung masses is presented.
The results calculated using the direct method are compared with
those obtained with the commercial software ANSYS [14]. In the
analysis performed with ANSYS the Lagrange multiplier method
is used.

The structure represented in Fig. 3 consists of two simply sup-
ported spans modeled with two-dimensional beam elements and
subjected to four moving sprung masses (only two are shown).
Each span is modeled with 50 finite elements. The geometrical
and mechanical properties of the system are the following: length
of each span L = 20 m, Young’s modulus E = 25 GPa, Poisson’s ratio
m = 0.2, cross-sectional area A = 6 m2, moment of inertia I = 3 m4,
mass per unit length m = 30 t/m, suspended mass Mv = 30 t and
spring stiffness kv = 156,550 kN/m. The distance between each
sprung mass is d = 20 m. The fundamental frequency of the simply
supported beams is 6.1 Hz and the natural frequency of the spring-
mass system is 11.5 Hz.

The sprung masses move at a constant speed v = 115 m/s. The
time step is Dt = 0.001 s and the total number of time steps is
900. The vertical accelerations at the midpoint of the first span
are plotted in Fig. 4a for a = 0, b = 0.25 and c = 0.5, and in Fig. 4b
for a = �0.1, b = 0.3025 and c = 0.6.

A nonzero value of the a parameter is useful for controlling the
spurious participation of the higher modes shown in Fig. 4a. Hence,
the analyses presented in the remainder of this section are per-
formed using a = �0.1.

The vertical displacements and accelerations at the midpoint of
the first span, obtained with both the direct method and ANSYS,
are plotted in Figs. 5 and 6. The vertical displacements of the first
and fourth sprung masses are compared in Fig. 7. The results
obtained with the direct method and ANSYS show an excellent



Table 1
Summary of the nonlinear dynamic analysis algorithm.

1. Factorize KFF and calculate L21 (see [5])
2. Start the time integration loop (t = 0)
3. Calculate the external load vector Pt+Dt

4. Assume the following predictors for the accelerations and contact
forces:

(a) atþDt
F ¼ 0

(b) Xt+Dt = Xt

Calculate the initial displacements and velocities:
(a) atþDt

F ¼ at
F þ _at

FDt þ ð1=2� bÞat
FDt2

(b) _atþDt
F ¼ _at

F þ ð1� cÞat
FDt

5. Start the Newton iteration loop (i = 0)
6. Check the contact status using Eq. (2) and calculate matrices D and H for

the existing constraints
7. Evaluate the residual force vector wðatþDt;i

F ;XtþDt;iÞ using Eq. (16)
8. Check the convergence criteria (e is a specified tolerance):

(a) if kwk=kP tþDt
F k 6 e, convergence achieved; continue to next time

step (step 3)

(b) if kwk=kP tþDt
F k > e, convergence not achieved; continue to step 9

9. If required, update the effective stiffness matrix using Eq. (22)
10. Solve the system of Eq. (38) using the block factorization solver (see [5])

to obtain Daiþ1
F and DXiþ1

11. Update the displacements, velocities, accelerations and contact forces:

(a) atþDt;iþ1
F ¼ atþDt;i

F þ Daiþ1
F

(b) _atþDt;iþ1
F ¼ c

bDt atþDt;iþ1
F � at

F

� �
þ 1� c

b

� �
_at

F þ Dt 1� c
2b

� �
at

F

(c) atþDt;iþ1
F ¼ 1

bDt2 atþDt;iþ1
F � at

F

� �
� 1

bDt
_at

F � 1
2b� 1
� �

at
F

(d) XtþDt;iþ1 ¼ XtþDt;i þ DXiþ1

12. Increment the iteration counter i and continue to step 6
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Fig. 4. Vertical acceleration at the midpoint of the first span considering (a) a = 0
and (b) a = �0.1.
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Fig. 5. Vertical displacement at the midpoint of the first span.
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Fig. 6. Vertical acceleration at the midpoint of the first span.
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agreement. The slight differences observed in Fig. 6 may be due to
the fact that the contact elements available in ANSYS use linear
displacement interpolation functions and the contact elements
presented in this paper use cubic functions.

Finally, the contact forces of the first and fourth sprung masses
are plotted in Fig. 8. The results obtained with the direct method
perfectly match the corresponding ANSYS solutions obtained using
the classical Lagrange multiplier method. The first sprung mass is
in contact with the beam during the analysis period, since the
motion of the beam is not large enough to cause a separation.
However, as can be observed in Fig. 8b), a null contact force in
the fourth sprung mass indicates the occurrence of a separation.
Therefore, it can be concluded that the proposed methodology is
capable of accurately modeling the contact and separation
between two bodies.

In order to assess the computational efficiency of the algorithm
the two simply supported spans are now modeled with 16,000
eight-node solid elements (2 � 80 � 10 � 10), as shown in Fig. 9.
This model has 58,696 unconstrained d.o.f. and a square cross sec-
tion of width b = 2.45 m, in correspondence with the geometrical
properties of the previous beams.

The vertical displacement at the midpoint of the first span is
plotted in Fig. 10, while the vertical displacement of the fourth
sprung mass is shown in Fig. 11. The contact force of the fourth
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Fig. 7. Vertical displacement of the (a) first and (b) fourth sprung masses.
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Fig. 8. Normal contact force of the (a) first and (b) fourth sprung masses.

Fig. 9. Two simply supported spans modeled with 3D solid elements.
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Fig. 10. Vertical displacement at the midpoint of the first span.
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Fig. 11. Vertical displacement of the fourth sprung mass.
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Fig. 12. Normal contact force of the fourth sprung mass.
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sprung mass is depicted in Fig. 12. Once more the results obtained
with the proposed methodology show a good agreement with the
corresponding ANSYS solutions.
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All the calculations have been performed using a workstation
with an Intel Xeon E5620 dual core processor running at
2.40 GHz. For a more accurate comparison, the calculations in
ANSYS and MATLAB have been performed using a single execution
thread. In the 900 time steps, a total of 1026 iterations have been
performed with a maximum of 2 iterations in the time steps that
require a change in the contact status. A convergence tolerance
of e = 10�6 is used (see Section 3.2). The elapsed time is 16,623 s
using ANSYS and 261 s using the direct method with the optimized
block factorization algorithm, which is about 64 times faster.

7. Conclusions

An accurate, efficient and robust method for analyzing the non-
linear vehicle–structure interaction is presented. The direct meth-
od is used to formulate the governing equilibrium equations and
impose the constraint equations that relate the displacements of
the contact node with the displacements of the corresponding tar-
get element. The accuracy of the method has been confirmed using
a numerical example, in which the results obtained with the direct
method and ANSYS show an excellent agreement.

The proposed method uses an optimized block factorization
algorithm to solve the system of linear equations. The performed
numerical analyses demonstrate the efficiency of the developed
algorithm, since the calculations performed using the direct meth-
od are 64 times faster than the calculations performed with ANSYS.

Since in the present method the tangential creep forces acting
at the interface are not considered, the lateral vehicle–structure
interaction cannot be taken into account. To determine these
forces, the material and geometric properties of the wheel and rail,
and also the relative velocity between the two bodies at the con-
tact point have to be considered. The extension of the present
method to three-dimensional contact problems is under develop-
ment and will be presented in a forthcoming publication.
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