
1 - Assistant Prof., Faculty of Engineering, University of Porto, 4099 Porto Codex
2 - Assistant Prof., University of Minho, Civil Engineering Department, Azurém, 4800 Guimarães
3 - Degree in Computer Science, Science Faculty, University of Porto

575

V encontro nacional de mecânica computacional
Universidade do Minho - Guimarães - 20 a 22 de Outubro de 1997

OBJECT ORIENTED PROGRAMMING: DATA PREPARATION AND VISUALIZATION

OF FEM MODELS

Álvaro F.M. Azevedo1,Joaquim A.O. Barros2,Eduardo R.B. Marques3 and Pedro S.O. Branco3

ABSTRACT

In this paper two object oriented applications are described. The former is intended to
generate data associated with the finite element method (FEM) and the later is a
three-dimensional visualization tool named 3DMesh. Both are based on the principles of object
oriented programming, namely encapsulation, inheritance and polymorphism. To support the
preparation of FEM data, a language named 3DO was developed. Its syntax is similar to a
subset of the C++ programming language. 3DO is based on object construction and
modification by methods that require a small number of arguments. With this tool, mesh
generation, definition of properties and loads and mesh refinement can be performed with
limited user effort, even when the model is complex. All the generated information can be
visualized with the program 3DMesh. This application is based on the OpenGL library and uses
the Microsoft Foundation Classes to simplify its integration in the MS-Windows environment.
3DMesh implements an interactive navigation technique that allows the visualization of the
model interior, preserving its integrity. Model attributes and the results of the FEM analysis
can also be visualized.

1. INTRODUCTION

As computer performance increases, the finite element method becomes capable of
analyzing models with higher complexity, in terms of shape, size, properties, loads and
behavior. With this growing trend, the time dedicated to the data preparation phase becomes
unacceptably long and new ways of generating huge amounts of information must be



576

envisaged. Furthermore, when changes have to be introduced in existing models, the
redefinition of all the properties and loads may become a daunting task. When this is necessary,
traditional methods such as element enumeration or CAD require a tedious repetition of most
of the data preparation work. With an object oriented approach and with the help of a
dedicated language, FEM data generation becomes more effective.

When 3D models are complex or hollow, and their interior parts have to be observed,
traditional strategies are based on model slicing or model decomposition, followed by the
removal of the parts that hide its interior. With the program 3DMesh no slicing or
decomposition is required, since an interactive walk-through navigation is implemented.
During this visit to the interior of the model, its attributes, such as material properties, loads,
stresses, etc. can be observed.

2. DATA PREPARATION USING THE 3DO LANGUAGE

3DO is a high level language dedicated to the generation of three-dimensional
geometric entities and their physical attributes, in accordance with finite element techniques
[Zienkiewicz and Taylor 1989]. The 3DO interpreter parses the statements, that must be
previously prepared using a text editor, and generates a new file containing a comprehensive
description of the FEM model.

3DO is based on two concepts: objects and operations on objects. These objects can
represent several types of entities, being the finite element the most important. Apart from
three-dimensional geometrical characteristics, a finite element has physical attributes, such as
material properties and loads. Object properties and attributes are created with default values
that can subsequently be changed using 3DO operations.

A simple example is used to introduce the main features of the 3DO language (Fig. 1).
The complete description of the language can be found in Marques et al. 1997.

5.0

1.0

0.7

0.35

2.0 3.0 6.0

0.25

frame

wall

50 kN/m2

Earth
pressure

wall

plate2plate1

plate

2.0

x 2

x 3

(m)

(m)

x 1

18.0

2.0

8.0

1.0

5.0 0.4

frame

plate

Fig. 1 - Bridge geometry, thickness of structural components and loads to be modeled using the 3DO language.

The bridge’s main geometric components are created by the 3DO code fragment listed
in Fig. 2a. Instruction (1) creates a Layer object named Bridge. When the layer is selected (see
instruction (2)) all the objects subsequently created are stored in that layer. Multiple layer
objects might be used in order to decompose the structure in sub-structures, allowing for an
independent manipulation of each layer or set of layers. The structure is discretized by four
noded Lagrange elements named Quad4 (see instructions (9), (12), (15) and (21)). Each
Quad4 is defined by four previously created Point objects (instructions (5-8), (10), (11), (13),
(14) and (17-20)). Auxiliary objects of type Double are used to specify shared coordinates to



577

be used in the construction of Point objects. This technique allows a parametric definition of
the model components (instructions (3) and (4)). Auxiliary objects are not stored in the output
file.

(1) Layer Bridge("Demonstration example");
(2) SetCurrentLayer(Bridge);

// Define wall
(3) Double Width 8.0; // wall width = 8.0
(4) Double Height 5.0; // wall height = 5.0

(5) Point wall_p1(0.0, 0.0, 0.0);
(6) Point wall_p2(0.0, 0.0, Height);
(7) Point wall_p3(0.0, Width, Height);
(8) Point wall_p4(0.0, Width, 0.0);

(9) Quad4 wall(wall_p1,wall_p2,wall_p3,wall_p4);

// Define plate1 and plate2
(10) Point plate1_p2(3.0, 0.0, Height);
(11) Point plate1_p3(3.0, Width, Height);

(12) Quad4 plate1(wall_p2, plate1_p2,
                 plate1_p3, wall_p3);

(13) Point plate2_p2(9.0, 0.0, Height);
(14) Point plate2_p3(9.0, Width, Height);

(15) Quad4 plate2(plate1_p2,plate2_p2,
                 plate2_p3,plate1_p3);

// Define frame
(16) Double Frame_Height 6.0;

(17) Point frame_p1(-2.0, 0.0, 0.0);
(18) Point frame_p2(9.0, 0.0, 0.0);
(19) Point frame_p3(9.0, 0.0, Frame_Height);
(20) Point frame_p4(-2.0, 0.0, Frame_Height);

(21) Quad4 frame(frame_p1,frame_p2,
                frame_p3,frame_p4);

frame

wall

plate1
plate2

x 2

x 3

x 1

a) 3DO code b) Model visualization

Fig. 2 - First step of the model generation using the 3DO language. Construction of the primary elements.

3DO attributes can be scalar values, vectors or text labels. These attributes can be
attached to finite element objects or to Point objects. Element attributes can simulate
discontinuities between elements, such as thickness or material properties. Two element
attributes are defined in the 3DO code listed in Fig. 3. The first attribute (instruction (1))
represents the thickness of the elements shown in Fig. 2b. The thickness of plate1 varies
linearly from 0.70 m to 0.35 m (see Fig. 1) and is defined by instruction (2). The thickness of
the remaining elements is constant: plate2, wall and frame are 0.35 m, 0.25 m and 0.40 m
thick, respectively (instructions (3-5)). The earth pressure on the bridge walls is characterized
by the attribute defined in instructions (6) and (7).

// Define element thickness and earth pressure attributes

(1) ElementScalarField thickness("Element thickness", 0.0);

(2) plate1.ElementScalarValues(thickness, 0.7, 0.35, 0.35, 0.7);
(3) plate2.ElementScalarValues(thickness, 0.35);
(4) wall.ElementScalarValues(thickness, 0.25);
(5) frame.ElementScalarValues(thickness,0.4);

(6) ElementVectField earth_pressure ("Wall: earth pressure",(0.0, 0.0, 0.0));

(7) wall.ElementVectValues( earth_pressure, (50.0, 0.0, 0.0), (0.0, 0.0, 0.0),
                                          (0.0, 0.0, 0.0), (50.0, 0.0, 0.0));

Fig. 3 - Second step of the model generation. Attribute definition and assignment.



578

The Refine operation divides a finite element in smaller elements. The nodal
coordinates of the generated elements are calculated using the element shape functions [Hinton
and Owen 1979]. Physical attributes are inherited by the generated elements and their values
are interpolated using the same shape functions.

The 3DO code that performs the mesh refinement is listed in Fig. 4a. Several objects of
type Weights (instructions (1-3), (6) and (7)) must be supplied as parameters of the Refine
operation (instructions (4), (5), (8) and (9)). Each object of type Weights defines the number of
divisions and their proportions along one element edge. Fig. 4b shows the refined mesh and
Fig.s 4c and 4d show the thickness and earth pressure attributes after mesh refinement.

// Refine the primary elements
(1) Weights w_plate1_s1(6, 0.25, 0.25, 0.50,
                          0.50, 0.75, 0.75);
(2) Weights w_plate2_s1(6);

(3) Weights w_wall_plates_s2(8);

(4) plate1.Refine(w_plate1_s1,w_wall_plates_s2);
(5) plate2.Refine(w_plate2_s1,w_wall_plates_s2);

(6) Weights w_frame_s1(16,
                      0.50, 0.50, 0.50, 0.50,
                      0.25, 0.25, 0.50, 0.50,
                      0.75, 0.75, 1.00, 1.00,
                      1.00, 1.00, 1.00, 1.00);

(7) Weights w_frame_s2(12);

(8) wall.Refine(w_frame_s2,w_wall_plates_s2);
(9) frame.Refine(w_frame_s1,w_frame_s2);

x 3

x 2

x 1

a) 3DO code b) Refined mesh

c) Thickness attribute (m) d) Earth pressure attribute (kN/m2)

Fig. 4 - Third step of the model generation. Refinement procedure.

The first instruction of the code listed in Fig. 5a repeats the frame object along the x2

axis. The physical attributes of the frame are also copied to the newly created object.
Subsequent operations on the frame object affect both copies. In instruction (2), a
PolygonalRegion auxiliary object named frame_cut is defined. A PolygonalRegion is a prism
defined by a set of points contained in a plane and by the prism height. In this example, four
points and a thickness define the frame_cut object (see Fig. 5a). Objects inside regions can be
grouped using the RegionSelection operator (instruction (3)). The properties of the objects in



579

the group can be globally changed using object operations. In instruction (3) the Freeze
operation hides the elements of the object frame that lie within the frame_cut region.

// Create a frame copy
(1) frame.Repeat((0.0, Width, 0.0),2);

// Remove some frame elements
(2) PolygonalRegion frame_cut(4,
                         (-0.1, 0.0, -0.1),
                         ( 9.1, 0.0, -0.1),
                         ( 9.1, 0.0,  5.1),
                         (-0.1, 0.0,  5.1),
                           8.1);

(3) frame.RegionSelection( frame_cut).Freeze;

repetition
cut

x 3

x 1x 2

a) 3DO code b) Visualization

Fig. 5 - Fourth step of the model generation. Definition of the frame structure.

One half of the bridge is already defined. The second part is created by mirroring a
copy of the first half. The corresponding code is listed in Fig. 6a. The symmetry plane is
characterized by a Plane object named plane_x9 (instruction (1)).

An object of type Collection groups copies of previously existing objects. In
instruction (2), copies of plate1, plate2, wall and frame are created and grouped in the
Collection object named coll. In instruction (3) coll is mirrored.

// Make copies of plate1, plate2, wall and
// frame, grouping them in a Collection
// object.
// The grouped objects are mirrored
// through plane x1=9

(1) Plane plane_x9(yz,9.0);

(2) Collection coll(wall,plate1,plate2,frame);

(3) coll.Mirror(plane_x9);

Symmetry
plane

x 3

x 2

x 1

a) 3DO code b) Visualization

Fig. 6 - Fifth step of the model generation. Mirror operation.

Tables 1 and 2 briefly describe the most relevant 3DO objects and operations.



580

Table 1 - 3DO objects.

Type Name Construction
arguments

Comments

Double Floating point constant. -
Coords 3 Double objects. 3D point coordinates.
Axis 2 Coords objects. -

Auxiliary Plane 3 Coords objects or a
macro (xy, xz or yz) and
a Double object.

-

Weights Integer constant n and n
Double objects.

Number of divisions and weighting factors along
one edge of a finite element.

PolygonalRegion Integer constant n, n
Coords objects and a
Double object.

Number of vertexes of the polygonal region,
coordinates of the vertexes and thickness.

Point Point 3 Double objects. -
Line2; Line3 2 or 3 Point objects. One-dimensional finite element with 2 or 3 nodes.
Triang3 3 Point objects. Two-dimensional finite element with 3 nodes.

Finite
elements

Quad4; Quad8; Quad9 4, 8 or 9 Point objects. Two-dimensional finite element with 4, 8 or 9
nodes.

Brick8; Brick20 8 or 20 Point objects. Three-dimensional finite element with 8 or 20
nodes.

Containers Collection Objects to be grouped. Auxiliary group.
Layer Layer title. Model subsection.

Attributes

PointScalarField
PointVectField
PointLabelField

Title and default value. Attributes of the points.

ElementScalarField
ElementVectField
ElementLabelField

Title and default value. Attributes of the elements.

Table 2 - 3DO operations.

Name Target (1) Arguments Comments

PointScalarValues
PointVectValues
PointLabelValues

Points Point attribute identifier and a
scalar, vector or label variable.

Definition of point attributes.

ElementScalarValues
ElementVectValues
ElementLabelValues

Finite elements Element attribute identifier and a
list of scalars, vectors or labels.

Definition of element attributes.

Refine Finite elements List of Weights. Refines the finite element.
RegionSelection Containers PolygonalRegion object. All objects inside the region are selected.
Freeze Any object None. Hides the object.
Mirror Any object Plane object. Mirrors the object through the plane.
Move Any object 3 Double objects. Each double specifies the displacement

component along the corresponding axis.
Repeat Any object 3 Double objects and an integer

constant n.
Repeats the object n times in the
specified direction.

Rotate Any object Axis object A and Double object
D.

Rotates the object D degrees using A as
the rotation axis.

Scale Any object Double object F. Reduces or enlarges the object according
to the factor F.

Copy None Any existent object and identifier
of the object to be created.

Creates a copy of an existing object.

(1) Operations cannot be performed on auxiliary objects or attributes.



581

The advantages of the 3DO language become more evident in complex mesh
generation problems, such as the one shown in Fig. 7.

Fig. 7 - Complex three-dimensional model.

3. INTERACTIVE NAVIGATION IN 3D MODELS

Scientific data interpretation is a hard task without the support of a suitable graphical
tool. When 3D models are too complex (see Fig. 7), a global visualization is inconvenient. In
these cases the model has to be sliced or decomposed to allow the observation of the hidden
parts [Gross 1994]. The 3DMesh program, described in this section, implements an interactive
navigation environment in order to achieve a perception of the model interior, preserving its
integrity. 3DMesh can be used to visualize the models generated with the 3DO language (see
Section 2). By means of a specific neutral file, the results of a scientific analysis can be
visualized as vectors or contour fills.

3DMesh is an object oriented program written in C++ that uses the following libraries:
Microsoft Foundation Classes (MFC) [Microsoft 1995] to provide a standard MS-Windows
interface and OpenGL [Neider 1993] for efficient graphical output. As the combination of
these libraries is not straightforward, a dedicated interface is required [Fosner 1997].

3.1 Class hierarchy

The classes described in Section 2 are not reused in 3DMesh, due to the specific
characteristics of each program. Fig. 8 shows the class hierarchy used in 3DMesh.

The following basic classes were defined: CNode encapsulates the nodal coordinates
and CVector, derived from CNode, has an additional method for vector normalization.

The CFiniteElement class defines the characteristics that are shared by all its derived
classes. Each finite element type has its own class derived from CFiniteElement and contains
an array of CNode and an array of CVector. The former represents the nodal coordinates and
the later the nodal normal vectors required by the OpenGL library.

Each finite element object has methods for drawing itself, writing its labels, painting its
scalar field and evaluating the shape functions that are necessary to calculate the normal vector
in each node [Zienkiewicz and Taylor 1988].



582

 CObject

 CQuad8

 CQuad4

 CTriangle

 CVector

 C3DMeshContext

 CLayerContext

 C3DMesh

 CViewContext

 CLayer

 CFiniteElement

 CNode

C3DMesh

CLayer

CLayer

C3DMeshContext

CLayerContext

CLayerContext

Fig. 8 - 3DMesh class hierarchy.

A layer is a set of elements that share the same properties, such as color, texture and
visibility. The class CLayer encapsulates the functionality of a layer. Its draw method calls the
draw method of each finite element. All the properties are aggregated in a distinct class called
CLayerContext, so that a layer can be simultaneously displayed with different properties in
different windows. The class C3DMesh aggregates all the layers that are present in the input
file. Similarly, C3DMeshContext contains an array of CLayerContext, with a number of
elements that coincides with the number of layers (see Fig. 8).

The graphical output is simplified by the aforementioned aggregation, since all the
model components are drawn with a single call to the C3DMesh draw method.

The CViewContext class encapsulates the user viewpoint coordinates and the model
orientation in the scene. The viewpoint or the model can be translated or rotated by
CViewContext methods.

3.2 MFC-OpenGL integration

The integration of a program with the MS-Windows environment becomes easier when
an appropriate library of classes and functions is employed. 3DMesh uses the Microsoft
Foundation Classes (MFC) and their associated document/view framework. MFC
encapsulates the functionality of several interface components, such as menus, dialog boxes,
toolbars, etc. In order to benefit from the object oriented programming abstraction paradigm,
all the user developed modules must be object oriented.

OpenGL is a subroutine library whose main purpose is to render 3D models, with
lighting and optional textures. Its availability on most platforms and its integration with
dedicated graphics hardware make OpenGL an efficient and standard tool that helps the
development of rendering software. The OpenGL library contains functions that perform
translations, rotations, viewport manipulation, clipping, lighting, texture mapping, etc.

Since OpenGL’s design is not object oriented, its integration with the MFC framework
requires a suitable interface class. In 3DMesh a class named COpenGLView [Fosner 1997] is
used to initialize the OpenGL environment, whenever a new view is created. COpenGLView is
responsible for setting up the OpenGL rendering context, as well as resizing the viewport when
the window size changes.

Four additional classes are derived from COpenGLView: CMainView, CTopView,
CFrontView and CSideView. Their role is to provide four different interfaces between the user
and the data model (see Fig. 9). Several CMainView instances may be created, allowing



583

multiple views of the model with different drawing contexts. Only CMainView accepts user
input by means of keystroke combinations that change the viewpoint position or, otherwise,
translate or rotate the object. The viewpoint can be interactively moved to the model interior
(see Fig. 10). Only the model components that fall inside the clipping volume (frustum)
[Wright and Sweet 1996] are represented. CTopView, CFrontView, and CSideView are
auxiliary views, whose role is to show the wireframe representation of the three basic
orthogonal projections of the model (see Fig. 10).

C3DMeshDoc is derived from the MFC class CDocument and contains a C3DMesh
object describing all the model data.

C3DMeshApp

C3DMeshDoc

New Window

File Open

C3DMesh

CTopView

CViewContext

C3DMeshContext

CSideView

CViewContext

C3DMeshContext

CFrontView

CViewContext

C3DMeshContext

CMainView

CViewContext

C3DMeshContext

CMainView

CViewContext

C3DMeshContext

Fig. 9 - 3DMesh: document/view architecture - window creation diagram.

A screen shot of the graphical user interface of the program 3DMesh is shown in
Fig. 10. Three orthogonal views of a gallery and a perspective from an interior viewpoint are
displayed in child windows. Several dialog boxes and toolbar buttons are available to allow the
modification of layer properties, such as colors, visibility, line types, fonts, etc. The model can
be rendered in solid mode, in wireframe mode or with an overlapped contour fill representing a
scalar field.

4. CONCLUSIONS

The advantages of data preparation with the 3DO language became evident in these
early tests and encourage further developments, mainly in the attribute generation and
manipulation. Since the program output is a comprehensive and easily interpretable file, the
generated models can be used in many scientific domains.

3DMesh is a practical and versatile visualization tool, well integrated in modern
computational platforms and fully exploiting the performance of dedicated OpenGL hardware.
Since its input is a neutral file, 3DMesh can be used to visualize information proceeding from
numerous kinds of problems.



584

Fig. 10 - Gallery: three orthogonal projections and inner view.

REFERENCES

Fosner, R. (1997), OpenGL Programming for Windows 95 and Windows NT,
Addison-Wesley.

Gross, M.H. (1994), Subspace Methods for the Visualization of Multidimensional Data Sets,
in Scientific Visualization - Advances and Challenges, Edited by Rosenblum et al., Academic
Press, pp. 171-186.

Hinton, E. and Owen, D.R.J. (1979), An Introduction to Finite Element Computations,
Pineridge Press, Swansea, U.K.

Marques, E.R.B., Azevedo, A.F.M. and Barros, J.A.O. (1997), 3DO Users Manual, FEMopen
Software, Lda., Porto, Portugal.

Microsoft Foundation Class Library Reference (1995), Microsoft Press.

Neider, J., Davis, T. and Woo, M. (1993), OpenGL Programming Guide, Addison-Wesley.

Wright, R. and Sweet, M. (1996), OpenGL Superbible, Waite Group Press.

Zienkiewicz, O.C. and Taylor, R.L. (1988), The Finite Element Method, 4th Edition,
McGraw-Hill.


