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Abstract 

In most structural optimization applications only the first derivatives of the objective 
function and constraints are used by the numerical algorithm. Some authors advocate the use 
of derivative free genetic algorithms due to the simplicity of their implementation and their 
ability to solve problems with multiple local minima and discontinuities. When first and 
second derivatives can be easily obtained their use often leads to an increased accuracy, 
convergence rate and reliability of the optimization process. This last approach is presented 
in this work, with applications to the sizing of truss members and to the shape optimization 
of a steel bridge. 
 
The optimization of a structure can be formulated as a mathematical program whose 
objective function is the cost and whose constraints define the structural behavior and bound 
the stresses and the displacements at some selected locations. When the displacement 
method is used, the functions that define the mathematical program are explicit functions of 
the design and behavior variables. First and second derivatives of those functions can be 
symbolically calculated by the computer algorithm in an efficient and accurate way. In the 
examples presented here all the expressions are polynomials with positive or negative 
coefficients and exponents. The derivation of those functions is straightforward and can be 
easily extended to the determination of higher order derivatives. Some work under progress 
will extend these capabilities to other types of functions. 
 
These ideas were implemented in a computer program named NEWTOP. The mathematical 
program is defined by an objective function and by inequality and equality constraints. 
These functions are supplied in a data file that is parsed by the computer program. Each 
inequality constraint is converted into an equality constraint by the addition of a squared 
slack variable. Since now there are only equality constraints, the Lagrangian function may 
be defined and a set of Lagrange multipliers is introduced. With the exception of some rare 
situations, the solution of the mathematical program is a stationary point of the Lagrangian. 
This necessary condition leads to a system of nonlinear equations whose solution is 
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calculated by the Newton method. In each Newton iteration a system of linear equations has 
to be solved. Its coefficient matrix is the Hessian of the Lagrangian and the right-hand side 
vector is the gradient of the Lagrangian. This system of linear equations is solved by a direct 
Gaussian elimination method or by an iterative conjugate gradient method. In both cases the 
sparsity pattern of the Hessian is taken into account leading to large economies in terms of 
storage requirements and computation time. All the derivatives that are required to build the 
Hessian matrix and the gradient of the Lagrangian are symbolically determined as described 
above. These derivatives are efficiently calculated and their accuracy is much higher than in 
the case of numerical differentiation. In order to improve the convergence characteristics of 
the Newton method scaling techniques are used. The variables are scaled by a factor that 
depends on the initial solution and the constraints are normalized, i.e., they are multiplied by 
a factor that causes the gradient of each constraint to be equal to the gradient of the objective 
function. The normalizing coefficients are also based on the initial solution. For these 
reasons the initial solution must be carefully chosen. It is also well known that the success of 
the Newton method is highly dependent on the initial solution. In structural optimization 
problems it is usually easy to obtain by traditional methods a solution that is both feasible 
and sufficiently close to the optimal solution. From such a starting point the Newton method 
is expected to exhibit quadratic convergence. The selection of the value of the line search 
parameter is also critical and strongly influences the convergence path. In some problems 
the value that minimizes the error in the Newton direction is the best choice while in others 
a trust region like approach leads to a more stable convergence that in some situations may 
be decisive. During the iteration process it is possible to visualize the evolution of some 
parameters and to draw a histogram with the variation of the scaled variables. This 
information may suggest that some parameters or the convergence strategy have to be 
changed. This user intervention may be performed with no need to restart the iteration 
process. 
 
This algorithm has been used to solve some optimization problems, e.g., truss sizing, shape 
optimization of trusses, sizing of frames with nonlinear behavior, etc. In truss sizing 
problems the variables are the cross-sectional areas of the members, equality constraints are 
the equilibrium equations in each degree of freedom and the inequality constraints are 
bounds in stresses, displacements and cross-sectional areas. Local buckling constraints may 
also be considered. Problems with more than 4 000 independent design variables and 20 000 
constraints have been successfully solved. In shape optimization problems the coordinates of 
some nodes may also change. This approach has been used to optimize the shape of a steel 
bridge. 
 


