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Abstract

A comparison is made between the cost minimization of a truss with variable
cross-sectional dimensions and fixed geometry (sizing) and the same problem
with variable nodal coordinates (shape optimization). Both problems can be
formulated as a mathematical program that comprises both structural analysis and
design. When this integrated formulation is used, the number of variables in the
mathematical program is usually large and an efficient algorithm is required. In
this paper the shape optimization problem is solved by a second-order algorithm
called NEWTOP that is based on the Lagrange-Newton method. The expressions
that define the mathematical program are parsed and their first and second
derivatives are symbolically determined and evaluated by the computer program.
With the NEWTOP code problems with more than 4 000 independent design
variables and 20 000 constraints have already been successfully solved. The
solution of a large variety of structural optimization problems has shown that this
code is robust, efficient and very accurate. A simple shape optimization example
and a bridge design problem are presented. The latter corresponds to a steel
pedestrian bridge with eight spans and constant height. Sizing and shape
optimization of one of the central spans are performed and compared.

1 Introduction

In the shape optimization of a truss three types of variables can be identified:
cross section sizing variables, geometric configuration variables and structural
behavior variables. Sizing and configuration variables may be simultaneously
treated as design variables (Kirsch1) or separately, leading to a multilevel
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approach (Vanderplaats2). In this case two different methods may be applied to
the sizing and to the configuration subproblems (Lipson & Gwin3). When sizing
and geometric variables are grouped and each optimization iteration is
decomposed in a sensitivity analysis phase and a design modification phase, the
algorithm that calculates the derivatives in order to the design variables must
distinguish between both types of variables (Beckers4). These derivatives may be
calculated analytically or using finite differences (Fleury5). More recently an
integrated formulation that treats geometric and behavior variables
simultaneously in a single mathematical program has been proposed by Burns &
Khachaturian6.

2 Shape optimization of trusses

In this paper an integrated formulation for the cost minimization of planar trusses
is presented. All the aforementioned variables are included in a single
mathematical program, namely cross-sectional dimensions, coordinates of the
points, nodal displacements, etc. (see Section 3.1). Since the displacement
method is used to describe the structural behavior, each equilibrium equation is
introduced in the mathematical program as an equality constraint. The following
inequality constraints have also to be considered: lower bounds on the
cross-sectional dimensions, move limits in nodal coordinates, lower and upper
bounds on bar stresses and local Euler buckling in each bar. The objective
function is the cost of the truss.

The integrated formulation adopted in this work leads to a mathematical
program whose size is usually larger than those obtained with other formulations,
such as those referred in Section 1. This is a disadvantage in terms of
computational burden but leads to a more versatile approach that facilitates the
inclusion of new types of constraints and allows for the use of general purpose
optimizers. In the next Section the characteristics of the optimizer that was used
in this work are briefly described.

3 Optimization with NEWTOP

NEWTOP is a computer code that can be used to calculate the solution of a
mathematical program described by an objective function and a set of equality
and inequality constraints. These functions are specified in a data file using a
human readable format. When the data volume exceeds a few lines of text, the
automatic generation of the functions is strongly recommended in order to avoid
a time consuming phase where typing errors would certainly occur. A specific
computer program was developed whose purpose is the generation of the
objective function and constraints that are required to solve the shape
optimization problems described below. This program needs the description of
the truss topology, materials, cross section types, loads and some optimization
related parameters, such as move limits and lower bounds on the cross-sectional
dimensions. Since this data is described in a format that is similar to those found
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in analysis codes, the use of cost minimization techniques by designers that are
not familiar with optimization programs is thus facilitated.

The main characteristics of the NEWTOP code are the following (for a
more detailed description see Azevedo7,8):

• the algorithm is based on the Lagrange-Newton method;

• all the functions are parsed and first and second derivatives are
symbolically determined (derivation by finite differences is not required
and previously derived functions need not be supplied);

• the Hessian matrix is calculated in each iteration, a Newton direction is
used and the corresponding step length is modified by a scalar line
search parameter;

• the sparsity pattern of the Hessian matrix is exploited in order to
improve the efficiency of the optimization process;

• quadratic convergence is achieved when the current solution is close
enough to a stationary point of the Lagrangian;

• inequality constraints are converted to equality constraints by means of
the addition of a squared slack variable;

• the Lagrange multipliers of inequality and equality constraints are also
calculated during the iteration process;

• scaling is automatically performed;

• elementary equality constraints, such as x xj i= 7 2. , are substituted in

the nonlinear program before the iteration process;

• the types of functions that are accepted by the computer code are
presently restricted to polynomials with positive or negative exponents,
such as

( )f x x x x x x x xn1 1
2

4
3

2 1
1

3 5
25 9 31 2 7 18,..., . . . .= − + −− − . (1)

The code is now being developed in order to accept any type of
function.

3.1 Shape optimization variables

The expressions that define the mathematical program may refer variable names

instead of the simple representation ( )x i ni = 1,..., shown in eqn (1). These

names must be typed as a sequence of characters that are accepted by ASCII text
files (e.g., D_i_k is the displacement of node i in the direction k).
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Some functions refer the cross-sectional area of the bar ( A ) and the Euler
buckling constraints refer the smallest moment of inertia of each cross
section ( I ). In most cases, A and I can be exactly or approximately calculated
with the following expressions

A C C B C BA A A= + +0 1 2
2 (2)

I C C B C B C B C BI I I I I= + + + +0 1 2
2

3
3

4
4 . (3)

The value of the Ci
j parameters is fixed a priori and depends on the shape

of the cross section. The variable B is an independent design variable that defines
the size of the cross section, for example the diameter or the width (see Section
5). The variables A and I are replaced in all the functions of the mathematical
program with the expressions on the right-hand side of eqns (2) and (3). It is
possible to perform this substitution keeping all the functions in the form of
eqn (1).

Figure 1 shows a truss bar, its degrees of freedom and loads.
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Figure 1. Truss bar and related variables.

Since the bar length is given by

( ) ( )L x x x x= − + −21 11

2

22 12

2
(4)

the substitution of this variable in the expressions of the elements of the stiffness

matrix (e.g., EAL−1 ) would generate terms that are not in the form of eqn (1).
For this reason the variable L is not substituted and the following equality
constraint must be added to the mathematical program
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This technique adds N variables and N equality constraints to the
mathematical program, being N the number of bars whose length may vary. This
drawback will be overcome in the next version of NEWTOP, since the capacity
to treat expressions such as eqn (4) will be added.

The displacements at the left and right end of each bar must be equal to the
displacements of the corresponding truss node. This relation can be established
by the following equality constraints

d Djpk ik= (6)

where j is the bar number, p is the bar node (1 or 2), i is the corresponding point
number and k is the nodal degree of freedom (1 or 2). Variables on the left-hand
side of eqn (6) are replaced in the mathematical program before the iteration
process. Only the nodal displacements Dik remain as behavior variables.

The integrated formulation presented in this paper treats the following
variables during the iteration process:

Bj - cross-sectional dimension (usually the diameter or the
width); j loops over each bar whose cross section may vary;

xiq - coordinate of a point (i) that can be moved in the direction q;

Lj - bar length; j loops over each bar whose length may vary;

Dik - displacement of the node i in the direction k; prescribed
degrees of freedom are skipped.

According to the classification referred in Section 1, Bj are cross section
sizing variables, xiq and Lj are geometric configuration variables and Dik are
structural behavior variables.

3.2 Objective function

The objective function is the cost of the truss, given by

Cost C L Aj
j

n

j j=
=
∑

1

(7)

being n the total number of bars, Cj the cost per unit volume of the bar material,
Lj the bar length and Aj the cross-sectional area. In eqn (7) Cj is known a priori,
Lj is a variable and Aj is replaced with eqn (2).
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3.3 Equality constraints

The nonlinear program contains the following equality constraints:

• for each bar whose length may vary, one equation such as eqn (5);

• for each non-prescribed nodal degree of freedom, one equilibrium
equation.

These functions only depend on the variables Bj, xiq, Lj and Dik and can be
written in the standard form exemplified by eqn (1).

3.4 Inequality constraints

The following inequality constraints are included in the nonlinear program:

• for each bar whose cross section may vary, one minimum width
constraint;

• for each bar, lower and upper bounds on the normal stresses and a Euler
buckling constraint;

• for each non-constant nodal coordinate, lower and upper bounds on the
coordinate value (move limits).

In the Euler buckling constraint the smallest moment of inertia of the cross
section is replaced with the right-hand side of eqn (3).

All the inequality constraints depend only on the variables Bj, xiq, Lj and
Dik and can be written in the standard form exemplified by eqn (1).

When a move limit constraint is active at the optimal solution the iteration
process must be restarted using the last pseudo-optimal solution as a starting
point. In some situations the move limits have to be adapted to the characteristics
of the problem.

4 Two bar truss

A classical shape optimization problem taken from the literature was used to
validate the proposed approach. This problem consists of a symmetric two-bar
truss, whose details are described in Figure 2 (see also Svanberg9).

This problem has one sizing variable (A) and one geometric variable (x).
The dead load is neglected and there is one load case consisting of a single force
(see Figure 2). The allowable stress is 100 kN/cm2. The objective function to be
minimized is the truss volume. Lower and upper bounds on A or x do not become
active at the optimal solution. At the starting point A = 1.5 cm2 and x = 50 cm.
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Figure 2. Two bar truss.

The optimal solution was found in 6 Newton iterations that required
0.1 seconds in a RISC workstation. Since the convergence rate is quadratic, a
very accurate solution was obtained. The minimum volume of the truss is reached
when A = 1.412 027 cm2 and x = 37.707 243 cm. Svanberg9 indicates a solution
with A = 1.41 cm2 and x = 38 cm.

5 Steel bridge

The high cost of civil engineering structures offers a good motivation to dedicate
some time during the design phase searching a solution that is acceptable and
economical. When the same design is reused, the investment in the application of
optimization techniques becomes even more effective. In order to evaluate the
savings that can be obtained with the shape optimization of a structural design, a
steel bridge is optimized under two distinct assumptions. In the first situation the
configuration is fixed and only the cross-sectional sizes are allowed to change
(see Section 5.1). The second approach consists in the simultaneous optimization
of the configuration and cross-sectional dimensions (see Section 5.2). The
characteristics that are shared by both approaches are briefly described.

The motivation for this study was the preliminary design of a pedestrian
steel bridge to be built in Portugal. The bridge has six spans with 36.0 meters and
two extreme spans with 25.0 meters, all having similar characteristics (see
Figure 3). A central span with null rotations at its endings and an extreme span
with similar boundary conditions were optimized. Only the study of the central
span is presented here.
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Figure 3. Steel bridge with 8 spans.
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Figure 4. Steel bridge: one half of a central span.

Figure 4 shows one half of a central span of the steel bridge. On the right,
symmetry conditions are introduced. On the left, no vertical displacement and no
global rotation is allowed. The cross section of all the bars is square and hollow,
as shown in Figure 5.
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Figure 5. Steel bridge: cross section of the bars.

Web thickness (w) is the same for all bars and its value is 0.63 cm. All the
horizontal bars share the same cross-sectional area (group I) and all the diagonal
bars are also linked (group II). According to the Portuguese structural codes and
to the adopted type of steel, the value of the Young modulus is
E = 20 600 kN/cm2 and the allowable stress is fyd = 27.5 kN/cm2 (tension and
compression). In the Euler buckling constraint an additional safety coefficient
whose value is 1.8 has to be introduced. The weight per unit volume is the mean
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value multiplied by 1.35, i.e., γ = 1.0395x10-4 kN/cm3. Bars 1 to 5 are subject to
a vertical distributed load whose value is p = 0.11025 kN/cm. In order to
simulate the behavior of the whole structure, the load in bar number 5 had to be
concentrated in its left end node. Otherwise half of its resultant would go directly
to the support at the right end of the bar. The value of the concentrated load
is pxL5.

5.1 Sizing

The structure shown in Figure 4 was initially optimized with fixed nodal
coordinates. The independent design variables are the cross-sectional sizes ( B )
of the bars belonging to groups I and II. At the optimal solution
B1 = 10.13328 cm, B11 = 9.73978 cm and the volume is 169501 cm3. Only two
constraints are active (Euler buckling in bars 1 and 11).

5.2 Shape optimization

In the alternative approach all the non-supported nodes were allowed to move
horizontally. The sizing variables B1 and B11 representing groups I and II were
also allowed to change. The optimal shape is shown in Figure 6.

Initial shape

Optimal shape

Figure 6. Steel bridge: optimal configuration.

At the optimal solution B1 = 8.55497 cm, B11 = 8.62598 cm and the volume
is 146050 cm3. Only Euler buckling constraints are active (bars 1, 2, 9, 10, 11, 13
and 15). The use of shape optimization techniques allowed for a 14% reduction
in the truss cost, relatively to the optimal solution with fixed nodal coordinates.
The complexity of the optimal shape did not increase and does not imply
additional costs associated with assembly difficulties. Using a RISC workstation
or a modern personal computer, the solution shown in Figure 6 can be obtained
in less than 10 seconds.



Computer Aided Optimum Design of Structures76

Conclusions

This example has shown that shape optimization can be used as a valuable tool in
the search for a structural solution that is both acceptable and more economical
than traditional designs. The accuracy and the efficiency of the second-order
algorithm used in this work is promising and indicates that this code may be
applied to larger and more complex shape optimization problems. The simplicity
of the formulation allows for the utilization of the proposed tool in everyday
engineering practice.
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