
VI Congresso
Nacional de Mecânica Aplicada
e Computacional
University of Aveiro, Portugal

17-19 April 2000

OBJECT ORIENTED AUTOMATIC DIFFERENTIATION AND
LEXICAL ANALYSIS IN ENGINEERING OPTIMIZATION

Luís F. D. Brás1 and Álvaro F. M. Azevedo2

ABSTRACT

Engineering optimization problems may be formulated as nonlinear programs (NLP),
defined by an objective function and a set of inequality and equality constraints. This NLP
may be solved by several types of methods, requiring or not the calculation of first and second
derivatives of the functions. Second-order methods have some advantages, namely quadratic
convergence and precision. The main drawback is the necessity of second derivatives and
their storage in a large Hessian matrix. When the sparsity of the Hessian is conveniently
exploited, efficient algorithms may be developed. With this formulation, problems with
thousand of variables and constraints have already been solved. The problems related to the
evaluation of first and second derivatives may be overcome with an automatic differentiation
algorithm (AD). This approach avoids the difficulties associated to the numerical evaluation
of the derivatives and enables the application of the algorithm to any type of expression. Each
nonlinear program is described by a set of functions that are interpreted by an object oriented
parser. Automatic differentiation is based on operator overloading and Rall numbers. All the
code is written in C++ and exploits the advantages of inheritance and polymorphism. In order
to demonstrate some of these features a structural optimization problem is presented.

1. INTRODUCTION

Structural optimization problems are usually formulated with nonlinear functions and
are subject to convergence difficulties due to local minimums, numerical problems or
unsuitable initial values. Techniques such as scaling and line search are employed to reduce
such problems. Programming complex techniques with a standard language, in particular
when a parser and automatic differentiation are required, is usually cumbersome, error prone
and hard to maintain. Object oriented programming introduces a new concept in terms of code
organization with each individual component treated as an object. An object can interact with

1 MSc Student, Faculty of Engineering, University of Porto, Portugal, http://civil.fe.up.pt/cv/megabyte
2 Assistant Professor, Faculty of Engineering, University of Porto, Portugal, http://www.fe.up.pt/~alvaro

 VI Congresso Nacional de Mecânica Aplicada e Computacional1694

the others using methods or operators. Object oriented compilers often lead to a performance
decrease, requiring adequate programming techniques in order to maintain a reasonable
efficiency. In this paper the implementation of the optimization algorithm in C++ is described
and a structural optimization example is presented.

2. LAGRANGE-NEWTON METHOD

Solving a mathematical program consists on the minimization of a function subject to
inequality and equality constraints. The following general formulation is used

Min. 






~
xf ()nxxx ,...,1~

= (1)

 subject to


~~~
0≤





xg           ( )mggg ,...,1

~
= (2)

       
~~~
0=





xh ()phhh ,...,1~

= (3)

Squared slack variables are added to the inequality constraints, allowing for a generic
treatment of all the constraints as equalities.

00 2

~~
=+





 →≤







iii sxgxg (4)

This operation causes a significant growth in the total number of variables of the
nonlinear problem. With the implementation of appropriate techniques this inconvenience
may be overcome1.

The Lagrangian of the nonlinear program is given by

∑∑
==





 





+












 +





+





=


 p

k
k

h
k

m

k
kk

g
k

hg xhsxgxfxsL
1 ~1

2

~~~~~~
,,, λλλλ (5)

In this expression 
~

gλ  and 
~

hλ  are the Lagrange multipliers associated with the

inequality and equality constraints, respectively. Vector 
~
X  contains all the variables ordered

in a carefully selected manner, in order to facilitate the solution of the system of linear
equations whose coefficient matrix is the Hessian of the Lagrangian (see below).




=
~~~~~

,,, hg xsX λλ (6)

The solution of the nonlinear program is a saddle point of the Lagrangian and the
following necessary condition must hold

~
0=∇L (7)

Secção IV – Matemática 1695

The Newton method can be used to calculate the solution of the system of nonlinear
equations that corresponds to (7). When this technique is employed, the optimization method
is termed Lagrange-Newton. For each Newton iteration (q) the following system of linear
equations must be solved

~

1

~~

1

~~
0=





∇+∆




 −− qqq XLXXH (8)

Matrix
~
H is the Hessian of the Lagrangian. In the current implementation this system

of linear equations may be solved by Gaussian elimination or iteratively using the conjugate
gradient method.

In each Newton iteration vector ∆ X q

~
 is used to update the current solution. In order

to increase the reliability of the process and the rate of convergence ∆ X q

~
 is multiplied by a

scalar value αq . A standard line search algorithm is used to calculate the value of αq that
minimizes the error in the direction ∆ X q

~
.

() 









∆+∇= − qqqq XXLError

~

1

~
αα (9)

Algorithms based on the Newton method are much more reliable when the initial
solution is close to a minimum and when the problem is not ill-conditioned. These conditions
are more easily fulfilled when the original nonlinear problem is subject to suitable
transformations. Variable substitution and constraint normalization are used to increase the
reliability of the optimization process.

3. AUTOMATIC DIFFERENTIATION

Second-order methods, such as the Lagrange-Newton method (see Section 2), depend
on the calculation of first and second derivatives. Its convergence rate and accuracy are
directly associated with the error of the derivatives. Therefore using a method that enables the
calculation of the exact derivatives is highly advantageous. Automatic differentiation can be
used to accurately calculate the derivative of any function and also perform its evaluation. By
applying the same algorithm to the previously derived expression, derivation to any order can
be easily performed. The current implementation of automatic differentiation relies on
operator overloading, i.e., redefinition of built-in operators. When an object oriented
programming language is used, overloaded operators may be implemented as global
functions, friend functions or class members2.

With the automatic differentiation algorithm described in this paper, the evaluation of
a function and the calculation of its derivatives are simultaneously performed. Some of these
techniques are exemplified with the following function

() 2121 0.2, xxxxf += (10)

 VI Congresso Nacional de Mecânica Aplicada e Computacional1696

The first derivative is determined with the following steps, which reproduce the tasks
performed by the algorithm.

() ()21
11

21 0.2, xx
xx

xxf +
∂
∂=

∂
∂

(11)

() ()2
1

1
1

0.2 x
x

x
x ∂

∂+
∂
∂= (12)

The derivative of the product of a pair of function is given by

()
jjj x

gfg
x
fgf

x ∂
∂+

∂
∂=

∂
∂

(13)

Using this equation, (12) becomes

() () ()2
1

2
1

1
1

0.20.2 x
x

x
x

x
x ∂

∂+
∂
∂+

∂
∂

(14)

Considering 0.101 =x and 0.202 =x , the final result is

0.10.00.20.200.00.1 =×+×+ (15)

In each step it is only necessary to store the result of the function evaluation and the
numerical value of each derivative. The basic components of (10) are the variables 1x and 2x
and the constant 0.2 . Their derivatives in order to 1x and 2x are stored in the following
vectors

[]0.0,0.1)(1

~

=
∂
∂ x
x (16)

[]0.1,0.0)(2

~

=
∂
∂ x
x (17)

[]0.0,0.0)0.2(
~

=
∂
∂
x (18)

These vectors are replaced in expression (14), which is generalized in order to include
the derivatives in order to 1x and 2x .

[] [] []0.1,0.00.20.200.0,0.00.0,0.1 ×+×+ (19)

[] []0.2,0.00.0,0.1 += (20)

Secção IV – Matemática 1697

[]0.2,0.1= (21)

The vector (21) represents the derivatives of function (10) in order to 1x and 2x .
For each expression component, the only storage requirements are a real number for

the result of its evaluation and a vector for the values of the partial derivatives. This automatic
differentiation technique can be encapsulated in a C++ class, whose operators are prepared to
deal with the function and its derivatives. This class was named CRall after L. B. Rall, who
applied the technique in an extended version of Pascal3. When evaluating a function or
calculating its derivatives, priority rules are used in order to preserve the usual operator
precedence.

Second-order derivatives can be evaluated in a similar manner, requiring the storage of
the Hessian of each expression component in a nn× matrix. Second-order derivatives of the
product of a pair of functions can be obtained with

()

jiji

ijjiji

xx
gf

x
g

x
f

x
g

x
fg

xx
fgf

xx

∂∂
∂+

∂
∂

∂
∂

+
∂
∂

∂
∂+

∂∂
∂=

∂∂
∂

2

22

(22)

Some problems may arise when the number of variables of the optimization problem
is large and the Hessian matrix is required, such as insufficient storage and lack of efficiency.
To overcome these problems a container class was developed, which takes into account the
sparsity of the matrix.

In practice, automatic differentiation can be useful in the analysis of complex
multivariant functions. Whereas it is an effective technique with any programming language,
automatic differentiation becomes even more attractive when object oriented concepts such as
operator overloading are used. Automatic differentiation is usually more time consuming than
a direct implementation of a hand or machine computed analytical derivative3.

4. OBJECT ORIENTED EXPRESSION PARSER

When automatic differentiation is used to calculate the derivatives of an expression,
the behavior of the operators between two Rall numbers has to be defined, according to the
rules described in Section 3. This behavior is not dependent on the type of expression parsing.
In terms of expression parsing two approaches are available: the easier alternative is to rely on
the C++ compiler3 and the other consists on the development of a parsing engine4. The former
requires a recompilation of the code whenever the expression is modified and is troublesome
when scaling techniques need to be applied. The later is not subject to these drawbacks but
requires the availability or the development of a complete expression parser.

The expression parser described in this section is based on the work of Joey Rogers4.
Some bugs were removed and new features were added, such as the support for the most
common intrinsic functions (e.g., sin, cos, sqrt, log, pow) and the implementation of some
scaling techniques.

Three types of tokens can be extracted from an expression: constants, variables and
operators. According to the priority rules of the parentheses and operators, all the tokens are
inserted in a binary tree. The evaluation of the root object causes a postorder traversal of the

 VI Congresso Nacional de Mecânica Aplicada e Computacional1698

binary tree, resulting in the value of the expression as a whole. This technique is exemplified
with the following function

24
321

−
×+ (23)

The corresponding tree is shown in Fig. 1.

+

1 /

*

2 3

-

4 2

Fig.1 – Binary tree of the expression (23)4.

Operators can be connected to terminal objects, such as constants and variables, or to
subtrees.

Fig. 2 shows the hierarchy diagram of the classes that implement the behavior of all
the expression components.

Fig. 2 – Hierarchy diagram of the expression parser.

Secção IV – Matemática 1699

The base class Exp_Obj defines the common interface of all the derived classes.
Polymorphism is used to facilitate an easy manipulation of the expression objects, regardless
of their specified type or functionality.

Table 1 exemplifies the creation of the binary tree for the function (23).

Table 1 – Building the binary tree of the expression (23)4.

Expression Expression Stack Operator Stack
1+2*3/(4-2)

+2*3/(4-2) 1

2*3/(4-2) 1 +

*3/(4-2) 1 2 +

3/(4-2) 1 2 +*

/(4-2) 1 2 3 +*

(4-2)

1 2 3

* +/

4-2)

1 2 3

* +/(

-2)

1 2 3

*

4

+/(

2)

1 2 3

*

4

+/(-

)

1 2 3

*

4 2

+/(-

1 2 3

*

4 2

- +/

1 2 3

*

4 2

-

/ +

1 2 3

*

4 2

-

/

+

Fig. 3 shows the complete algorithm that is used to create the binary tree of a generic
expression.

Only the variable name is stored in the class Variable_Obj (Fig. 2). Its value and
scaling factor comes from a symbol table that must be supplied when the expression is
evaluated. The symbol table is implemented as a singly linked list. When an expression is
evaluated, its first and second derivatives are also evaluated, due to the behavior of the Rall
numbers.

 VI Congresso Nacional de Mecânica Aplicada e Computacional1700

Fig. 3 – Algorithm for the creation of the expression tree.

Begin

Current Expression Object

Current Expression Object =
OPERAND_TYPE

Push Current Expression
Object to Expression Stack

Current Expression Object =
BINARY_OPERAND_TYPE,

UNARY_OPERAND_TYPE or
OPEN_PARENT_TYPE

Priority2
=

Current Expression Object's
Priority

Pop object off the Operator
Stack and store it in

Operator_Obj

Operator_Obj =
OPEN_PAREN_TYPE Priority1 = 0

Push Operator_Obj onto
Expression Stack

Operator_Obj =
CLOSE_PAREN_TYPE Priority1 = -1

Priority1 =
Operator_Obj's Priority

Priority1 >=Priority2

Push Operator_Obj onto
Operator Stack

Push Current Expression Object
onto Operator Stack

Current Expression Object =
CLOSE_OPERAND_TYPE

Current Expression Object =
STOP_TYPE

Pop the remaining objects off of
the Operator Stack and push

them onto the Expression Stack

Object =
OPEN_PARENT_TYPE

Pop objects off of the Operator
Stack and push them onto the

Expression Stack

End

True

True

True

True

True

TrueTrue

Secção IV – Matemática 1701

5. EXAMPLE

A truss optimization problem1 and an excerpt of the C++ source code describing the
problem are shown in Fig. 4. The truss has three bars, two load cases and the properties
indicated in Fig. 4b).

100 cm

100 cm

20;10 kN

10;20 kN

x

y

a1 a2 a3 = a1

100 cm

a) Truss bar

2/00020 cmkNE =
2/14 cmkN=−σ
2

min 15.0 cma =

b) Properties

COpt< double > Opt;
COptionsOpt< double > OptOpt;
int Iterat;
double Error;
double ObjFunc;
Symbol_Table< double > SymbTab;

m_dOpt.InitializeWith(4,14);
m_dOpt.SetObjFunction("565.6854*a1+100*a2");
m_dOpt.SetEqConstr("141.4213*a1*d_1_1-10",1);
(…)
m_dOpt.SetEqConstr("141.42*a1*d_2_2+200*a2*d_2_2-10",4);
m_dOpt.SetIneqConstr("-a1+0.15",1);
m_dOpt.SetIneqConstr("-a2+0.15",2);
m_dOpt.SetIneqConstr("-100*d_1_1+100*d_1_2-14",3);
(…)
m_dOpt.SetIneqConstr("-100*d_2_1-100*d_2_2-14",14);
m_dOpt.SetVarByType("a1", 1.5, INDEPENDENT);
m_dOpt.SetVarByType("a2", 1.5, INDEPENDENT);
m_dOpt.SetVarByType("d_1_1", 1.0, DEPENDENT);
(…)
m_dOpt.SetVarByType("d_2_2", 1.0, DEPENDENT);

m_dOpt.Solve(OptOpt, Iterat, Error, ObjFunc, SymbTab);

cout << "Results" << endl;
cout << "Final error = " << Error << endl;
cout << "Number of Iterations = " << Iterat << endl;
cout << "Objective function = " << ObjFunc << endl;
SymbTab.ShowValues();

c) Source code

Fig. 4 – Optimization of a three bar truss.

The results are presented in Table 2 and Fig. 5.

Table 2 – Optimal solution.

a1 a2 d_1_1 d_1_2 d_2_1 d_2_2
1.280127 0.788262 0.055237 0.059051 0.110475 0.029526

CONCLUSION

The work presented in this paper consists on the combination of a robust second-order
optimization method, an object oriented parser and an automatic differentiation algorithm
based on operator overloading and Rall numbers. Some preliminary numerical
experimentation indicates that the code is very versatile, i.e., its adaptation to new types of
optimization problems is very easy. Code maintenance and the implementation of alternative
numerical techniques is facilitated by the object oriented design and its inherent features, such
as polymorphism and inheritance. Some work is still needed to improve the global efficiency
of the optimization process.

 VI Congresso Nacional de Mecânica Aplicada e Computacional1702

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations

O
bj

ec
tiv

e
fu

nc
tio

n

a) History of the objective function.

1E-11

1E-09

1E-07

1E-05

0.001

0.1

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations

E
rr

or

b) History of the error.

-2
0

2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations

S
la

ck
 V

ar
ia

bl
es

c) History of the slack variables.

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations

V
ar

ia
bl

es

d) History of the variables.

-100

-50

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations

La
gr

an
ge

 E
q.

e) History of the Lagrange multipliers of the equality
constraints.

-40

-20

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations

La
gr

an
ge

 In
eq

.

f) History of the Lagrange multipliers of the inequality
constraints.

Fig. 5 – History of optimization of the three bar truss.

REFERENCES

[1] Azevedo, A. F. M., “Optimization of Structures with Linear and Nonlinear Behavior”,
Ph.D. thesis (in Portuguese), Faculty of Engineering, University of Porto, 1994.

[2] Stroustrup, Bjarne, “The C++ Programming Language”, Third Edition,
Addison-Wesley, 1997.

[3] Barton, John J. and Nackman, Lee R., “Automatic Differentiation”, C++ Report,
pp. 61-63, February 1996

[4] Rogers, Joey, “An Object-Oriented Expression Evaluator”, C/C++ Users Journal,
pp. 43-51, April 1996.

