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Abstract 
Industrial floors are still the main application of steel fiber reinforced concrete (SFRC). Crack 
control joints are made to concentrate the crack propagation in these weakness-induced surfaces, 
resulting in a floor divided in panels. The design of a SFRC floor is currently made by means of 
the study of one of these panels, using the yield line method (YLM). The ultimate load of the panel 
depends on the maximum bending moment of the slab. Since in flooring applications the content 
of steel fibers, in general, does not exceed 45 kg/m3, the maximum bending moment is only 
slightly increased by the presence of steel fibers. Therefore, when the YLM is used to design this 
type of SFRC application the contribution of the fiber reinforcement cannot be accurately 
simulated. In the present work, this deficiency of the YLM is shown and justified by means of 
experimental and numerical research. Furthermore, the YLM is unable to predict the 
force-deflection relationship of a concrete slab supported on soil. The finite element method 
(FEM) is a powerful tool to analyze this type of structures. However, the accuracy of the analysis 
depends on the quality of the constitutive model used to simulate the nonlinear behavior of the 
intervening materials. For this purpose, an appropriate constitutive model was developed and is 
briefly described in the present work. This model is used in the analysis of SFRC slabs on soil. 
Using experimental results and applying the corresponding computational code, a numerical 
strategy for establishing design charts for SFRC slabs on soil is proposed. 
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1.0  Introduction 
 
A research project was carried out to characterize the properties and to develop a cost competitive 
steel fiber reinforced concrete (SFRC) applicable to floors of industrial buildings [1, 2]. In this 
project the influence of the percentage of cement replaced by fly ash, the concrete age, the fiber 
aspect-ratio and the content of fibers on the mechanical properties of the SFRC was analyzed. The 
compositions and the obtained main properties are published elsewhere [1]. The main objective of 
the experimental program was the characterization of the post-cracking behavior of this material. 
For this purpose, notched beams were subject to three point bending tests according to the 
recommendations of RILEM TC 162-TDF [3]. This research project is also devoted to the 
development of a design approach for industrial floors. In order to avoid the formation of 
uncontrolled cracks due to shrinkage and temperature variation, crack control joints are opened, 
dividing the floor into panels. The design of a SFRC floor is, in general, restricted to the analysis 
of a representative panel. The fiber suppliers, in general, recommend the use of the yield line 
method (YLM) to design this type of applications [4]. According to the YLM the load carrying 
capacity of a concrete slab depends on the maximum bending moment of the slab, M. Therefore, 
the contribution of the fiber reinforcement can only be simulated by the YLM when M increases 
with the content of fibers, Qf. In order to verify this observation, the values of M were obtained in 
concrete specimens reinforced with 15, 25, 35 and 45 kg/m3 of Dramix® RC-65/60 hooked end 
steel fibers. In these experiments the compositions do not incorporate fly ash and the properties 
were obtained at the age of 28 days. The properties of these concretes can be found elsewhere 
[1, 2]. In the present work the values of M are calculated with a cross-section layered model 
(CSLM) that takes into account the constitutive laws of the intervening materials and the kinematic 
and equilibrium conditions [2]. In the CSLM, the SFRC post-cracking behavior is modeled by a 
stress-crack opening diagram, that is defined by performing inverse analysis in order to fit, with 
acceptable error, the force deflection relationships obtained in the three point bending notched 
beam tests carried out according to the RILEM TC 162-TDF. The CSLM provides the moment-
curvature, M-χ, and moment-crack opening, M-w, relationships of a cross section. The 
performance of the fiber reinforcement is not affected by environmental aggressions when the 
crack width does not exceed 0.3 mm and normal conditions are considered [5]. For this reason the 
value of M used to evaluate the load carrying capacity of the slab according to the YLM is the 
maximum moment up to a crack opening of 0.3 mm (MR). The force values corresponding to this 
load carrying capacity are referred by FYLM and are compared with the results obtained with the 
finite element method. In this case the force is termed FFEM. In the FEM simulation a material 
nonlinear analysis was performed considering an elasto-plastic multi-fixed smeared crack 
model [6]. The influence of the slab thickness, h, the soil reaction modulus, Ks, and the content of 
fibers, Qf, was analyzed by means of a parametric study where h was considered equal to 120, 160, 
200 or 240 mm, Ks equal to 0.01, 0.04 or 0.08 N/mm3 and Qf equal to 15, 25, 35 or 45 kg/m3. In all 
cases Dramix® RC-65/60 hooked ends steel fibers were used. Based on the values obtained with 
the FEM analysis, a chart is proposed for the design of SFRC slabs on soil. 
 
2.0  Elasto-plastic multi-fixed smeared crack model for the FEM simulations 
 
According to the present model, a concrete slab is considered a plane shell formulated under the 
Reissner-Mindlin theory [7]. In order to simulate the progressive damage induced by cracking and 
plasticity, the shell element is discretized in layers. Each layer is considered in a state of plane 
stress. The incremental strain vector derived from the incremental nodal displacements obtained 
under the framework of a nonlinear FEM analysis is decomposed in an incremental crack strain 
vector, crε∆ , and an incremental strain vector of the concrete between cracks, coε∆ . This last 



vector is decomposed in an elastic reversible part, eε∆ , and an irreversible or plastic part, pε∆ , 
resulting 
 

   cr co cr e pε ε ε ε ε ε∆ = ∆ + ∆ = ∆ + ∆ + ∆  (1) 
 
2.1 – Concrete constitutive laws 
The incremental stress vector can be computed from the incremental elastic strain vector, 
 

   co coDσ ε∆ = ∆  (2) 
 

where coD  is the concrete tangent constitutive matrix, 
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with co
mbD  being the in-plane stiffness matrix and co

sD  the out-of-plane shear stiffness matrix [8]. In 
the present model concrete behavior is assumed linear elastic in terms of out-of-plane shear. 
Therefore, the concrete nonlinear behavior is only considered in the co

mbD  constitutive matrix. 
 
2.1.1 - Linear elastic uncracked concrete 
For linear elastic uncracked concrete, co

mbD  is designated by eco
mbD  being defined elsewhere [8]. 

 
2.1.2 - Linear elastic cracked concrete 
In cracked concrete, with the concrete between cracks in linear elastic state, co

mbD  is replaced in (3) 
with ecrco

mbD . This matrix is defined with the following expression [6] 
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where crT  is a transformation matrix that depends on the direction of the cracks formed at a 

sampling point and cr
D̂  is the constitutive matrix of the set of cracks. Each crack is governed by 

the following constitutive relationship 
 

   σ ε∆ = ∆l l
cr cr crD  (5) 

 

where σ∆ l
cr  is the incremental local crack stress vector. This vector has the following components, 
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In this equation, ε∆ l
cr  is the incremental crack strain vector, which has the following components 
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is the crack stiffness matrix, where DI
cr  and DII

cr  are the fracture mode I and the fracture mode II 
stiffness modulus of the smeared cracks, respectively. In (8) DI

cr  is characterized by the fracture 
parameters, namely the stress at crack initiation, cr

n 1,σ  (see Fig. 1), the fracture energy, Gf, the shape 
of the softening law and the crack band width, lb. In smeared crack models the fracture zone is 
distributed over lb, which must depend on the finite element geometric characteristics in order to 
assure that the results of the FEM analysis are not dependent on the finite element mesh [9]. 



Therefore, cr
n bw lε∆ = ∆ , where w∆  is the total crack opening displacement increment in the crack 

band width. In the present numerical simulation lb is assumed to be equal to the square root of the 
area associated with an integration point. Fiber reinforcement behavior is mainly influenced by the 
fracture energy and by the shape of the softening branch. Previous research has shown that the 
trilinear cr cr

n nσ ε−  diagram represented in Fig. 1 is suitable for the simulation of the fracture mode I 
of the SFRC [2]. 
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Figure 1. Tri-linear tensile-softening diagram. Figure 2. Hardening/softening diagram. 

 

The fracture mode II modulus, cr
IID , is obtained with the following expression [7] 
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where Gc is the concrete elastic shear modulus and β  is the shear retention factor, which is 
defined by 
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In this equation 1p  is an integer parameter that can assume distinct values in order to simulate 
different levels of concrete shear stiffness degradation [7]. 
 
2.1.3 - Elasto-plastic uncracked concrete 
In the elasto-plastic uncracked concrete, the in-plane material stiffness matrix co

mbD  of (3) is 
replaced with epco

mbD . This matrix is obtained with the following expression [6] 
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where, 
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f σ∂ ∂  is the flow vector and hc is a scalar function that depends on the hydrostatic pressure [6]. 
The aim of hc is the amplification of the contribution of fλ σ∆ ∂ ∂  to the plastic strain increment 
vector, pε∆  
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In (12) λ∆  is the variation of the plastic multiplier, which was assumed to be equal to the 
variation of the hardening parameter, κ∆ , since a strain-hardening hypothesis was assumed. For 
the amount of fibers used in industrial floors, experimental research has shown [10, 11] that the 
shape of the yield surface, f, of SFRC under biaxial stress state is similar to the yield surface of the 
corresponding plain concrete. Therefore the yield surface proposed by Owen and Figueiras, 
 

   ( ) ( ) ( )1 2
, 0T Tf P qσ κ σ σ σ σ κ= + − =  (14) 

 

was adopted in the present model, where P  is the projection matrix and q  is the projection 

vector [6]. Fig. 2 represents the relationship between the yield stress,σ , and the hardening 
parameter, κ , used to simulate the hardening and softening phases of plain concrete behavior. 
This relationship was also used in SFRC applications, since for the amount of fibers used in 
flooring applications the concrete uniaxial compression behavior is not affected by the presence of 
fibers. The expressions of ( )iσ κ are published in [6]. 
 
2.1.4 - Elasto-plastic cracked concrete 
For the case of cracked concrete with concrete between cracks exhibiting an elasto-plastic 
behavior, co

mbD  of (3) is replaced with epcrco
mbD . This matrix is defined with the following 

expression [6] 
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where epco
mbD  was defined in (11). 

 
2.2 – Soil 
The soil is simulated with springs that are orthogonal to the laminate structure. The evaluation of 
the tangent soil reaction modulus can be performed with plate-loading tests [12]. The results of 
these tests have revealed that the soil pressure-settlement relationship may be simulated with a 
multilinear or linear-parabolic diagram [8, 12]. The soil contribution to the stiffness of the whole 
structural system is computed by adding the soil stiffness matrix, 
 

   ( )
( )e

e T
sso A

K N K N dA= ∫  (16) 
 

to the slab stiffness, where ( )eA  is the area of a finite element and N  is the vector of the element 
shape functions. In (16) sK  is the tangent soil reaction modulus. The friction between the slab and 
the soil is neglected. When the concrete slab loses contact with the soil in a sampling point, the 
part of the soil that corresponds to this sampling point does not contribute to the stiffness of the 
slab-soil system. 
 
3.0  YLM versus FEM analysis 
 
3.1 – SFRC fracture parameters and maximum bending moment of the slabs cross section 
Applying an inverse analysis, as described in [13], in order to fit the force-deflection relationships 
obtained in the three point notched SFRC beam tests carried out according to RILEM TC 162-TDF 
recommendations, the parameters defining the cr cr

n nσ ε−  diagram depicted in Fig. 1 were obtained. 
These values are indicated in Table 1. 
 



Table 1 – Parameters defining the diagram of Fig. 1 for the cost competitive SFRC 
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4w  
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(N/mm) 

15 2.40 0.35 0.11 2.55 0.10 0.101 3.969 3.975 2.30 
25 2.60 0.51 0.31 1.28 0.79 0.053 3.279 4.164 3.90 
35 1.95 0.70 0.22 2.97 0.63 0.160 3.389 5.398 3.60 
45 3.42 0.60 0.60 0.05 0.14 0.003 0.812 5.614 6.60 

 
For the evaluation of the maximum bending moment, M, a CSLM, as described in [14], was used. 
In the CSLM, the concrete post-cracking behavior is simulated with a trilinear stress-crack opening 
σ-w diagram derived from the cr cr

n nσ ε−  diagram represented in Fig. 1. In order to convert cr cr
n nσ ε−  

into cr
n wσ − , the following relationship was assumed: w= cr

nε lb. In the present work lb was 
considered equal to the square root of the area of the integration points of the finite elements that 
were considered in material nonlinear regime (see Fig. 5), resulting lb=100 mm. According to this 
strategy, the values obtained for wi are indicated in Table 1. 
Applying the CSLM and the values indicated in Table 1, the maximum moment up to a crack 
opening of 0.3 mm (MR) was obtained for slabs with distinct thickness and built with the cost 
competitive SFRC proposed in the research project. The obtained MR values are included in 
Table 2. It can be verified that for Qf < 45 kg/m3 the maximum moment has occurred for a crack 
opening, wR, less than 0.3 mm. For Qf = 45 kg/m3 the maximum moment up to w=0.3 mm occurred 
at this crack opening value. The values included in Table 2 indicate that the fiber influence in 
terms of MR is only significant for Qf = 45 kg/m3. 
 

Table 2 – Maximum moment up to a crack opening of 0.3 mm (MR). 
h 

[mm] 
Qf 

[kg/m3] 
MR 

[kN.m/m] 
wR 

[mm]  h 
[mm] 

Qf 
[kg/m3] 

MR 
[kN.m/m] 

wR 
[mm] 

15 10.55 0.034  15 29.25 0.031 
25 10.70 0.022  25 29.82 0.025 
35 10.11 0.092  35 28.11 0.072 

 120 

45 12.80 0.300  

200 

45 35.70 0.300 
15 18.74 0.032  15 42.16 0.039 
25 19.07 0.024  25 42.97 0.026 
35 17.94 0.100  35 40.53 0.079 

160 

45 22.78 0.300  

240 

45 51.56 0.300 
 
3.2 – Design according to the YLM 
The design of a SFRC floor is, in general, restricted to the analysis of a representative panel. The 
fiber suppliers are recommending the use of the YLM to design this type of structures. For the most 
common situations a point load in a corner of the panel is the most unfavorable load configuration, 
see Fig. 3. According to the YLM, when a load F, uniformly distributed in an area corresponding to 
a quarter of circle of radius 2a, is applied in the corner of a panel, the ultimate load can be 
obtained from the following expression [4] 
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where M is the negative maximum bending moment of the slab, Ks is the soil reaction modulus, Ec 



and νc are the concrete Young’s Modulus and Poisson coefficient, and h is the slab thickness. 
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Figure 3. Yield line in a concrete 

panel loaded in a corner. 
         Figure 4. Relationship between F/M and a/L. 

 
Replacing in (17) M with MR values from Table 2, the ultimate load according to the YLM, 
designated by FYLM, is obtained. These values are indicated in Table 3, showing that increasing the 
value of Ks and keeping constant the values of the remaining variables, the increase of the FYLM is 
marginal. This can be justified by the quasi-constant value of the F/M ratio for the a/L values 
considered in the context of the present work (see (17) and Fig. 4). The ratio F/M only increases 
significantly for values of a/L above 0.2, which correspond to values of slab thickness, soil 
reaction modulus and loaded area not used in common flooring applications. Fig. 4 includes the 
example of a slab with h=160 mm and Qf=25 kg/m3. For the Ks values considered, a/L is less than 
0.1, resulting in a variation between 2.32 and 2.47 for the relationship between F/M and a/L. From 
the analysis of the values of YLMF  it is verified that for a given slab thickness, YLMF  did not change 
significantly up to a fiber content of 35 kg/m3. This is justified by the similar values of MR for 
Qf ≤ 35 kg/m3 (see Table 2). Table 2 shows that for Qf ≤ 35 kg/m3 MR has occurred at a very low 
crack opening values. For these wR values the fiber reinforcing mechanisms are not yet activated. 
Therefore, for the amount of fibers used in flooring practice the YLM cannot take into account, 
directly, the benefits provided by the addition of fibers to concrete. 
 
3.3 – Design according to the FEM 
The performance of the elasto-plastic multi-fixed smeared crack model has already been appraised 
[7, 8]. This model was recently implemented in the release 4.0 of FEMIX computational code [6], 
and several enhancements were introduced in the original model in order to increase its numerical 
robustness. In the current section this model was applied to analyze the behavior of the 5×5 m2 
panel represented in Fig. 5, where the adopted finite element mesh is also shown. Since the 
elements outside the square of dashed line are not affected by any concrete nonlinear phenomena, 
they are assumed to behave linearly. The elements in the interior of this square were assumed to 
have a nonlinear material behavior. The panel thickness was decomposed in 10 layers of equal 
thickness. The SFRC fracture parameters indicated in Table 1 were used to define the cr cr

n nσ ε−  
trilinear diagram adopted to model the fracture mode I. Average compressive strength of 38 MPa 
and a Young's Modulus of 32 GPa were considered in the analysis. The compressive strength was 
evaluated in cubic specimens of 150 mm edge. Fig. 6 represents the crack pattern for the slab with 
h=160 mm, Qf =25 kg/m3 and Ks= 0.01 N/mm3, at a load level corresponding to a maximum crack 
with of 0.3 mm. 



Table 3 – Load carrying capacity according to the YLM (using MR values) and FEM analysis (load 
corresponding to a crack opening of 0.3 mm) 

YLMF  (kN) 
0.3( )FEM wF  (kN) 

0.3( )FEM w YLMF F  

      
 
 

   
h 

(mm) 
Qf 

(kg/m3) 
MR 

(kN.m/m) 
0.01 0.04 0.08 0.01 0.04 0.08 0.01 0.04 0.08 

            

15 10.55 25.02 26.22 27.04 24.59 28.57 32.42 0.98 1.09 1.20 
25 10.7 25.38 26.59 27.43 29.15 32.85 37.11 1.15 1.24 1.35 
35 10.11 23.98 25.13 25.91 32.98 42.62 43.54 1.38 1.7 1.68 

120 

45 12.80 30.36 31.81 32.81 41.01 48.17 53.86 1.35 1.51 1.64 
15 18.74 43.48 45.16 46.27 40.17 47.12 49.22 0.92 1.04 1.06 
25 19.07 44.24 45.95 47.08 46.99 55.36 57.39 1.06 1.20 1.22 
35 17.94 41.62 43.23 44.29 52.16 64.57 77.48 1.25 1.49 1.75 

160 

45 22.78 52.85 54.89 56.24 66.36 77.40 83.14 1.26 1.41 1.48 
15 29.25 66.88 69.10 70.54 57.08 64.87 73.08 0.85 0.94 1.04 
25 29.82 68.19 70.45 71.91 69.16 77.33 86.48 1.01 1.10 1.20 
35 28.11 64.28 66.41 67.79 76.38 88.29 100.94 1.19 1.33 1.49 

200 

45 35.70 81.63 84.34 86.09 97.87 113.55 121.63 1.20 1.35 1.41 
15 42.16 95.40 98.21 100.00 77.87 90.88 94.80 0.82 0.93 0.95 
25 42.97 97.23 100.10 101.92 94.37 108.30 112.71 0.97 1.08 1.11 
35 40.53 91.71 94.41 96.14 105.25 118.61 128.53 1.15 1.26 1.34 

240 
 

45 51.56 116.67 120.11 122.30 136.61 152.66 167.28 1.17 1.27 1.37 
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Figure 5. Finite element mesh. Figure 6. Crack pattern in the slab top surface 
at a load level corresponding to w0.3 

(h=160mm, Qf=25 kg/m3 and Ks=0.01 N/mm3). 
 
Figure 7 depicts a typical force-corner deflection relationship up to the moment when a maximum 
crack opening of 0.3 mm (w0.3) occurred. In this figure one can observe the loads for a maximum 
crack width corresponding to the wR indicated in Table 2 (designated by 

( )RFEM wF ) and the loads for 

w0.3 ( 0.3( )FEM wF ). The values of 
0.3( )FEM wF  are indicated in Table 3. Since for Qf ≤ 35 kg/m3 wR are 

Ks (N/mm3) Ks (N/mm3) Ks (N/mm3) 

Main crack zone 



too small to mobilize the fiber reinforcing mechanisms (see Table 2), the 
( )RFEM wF  values of the 

slabs reinforced with Qf ≤ 35 kg/m3 are similar. For the 
0.3( )FEM wF  values, the effects of the fibers 

are visible, i.e., the load carrying capacity increases with the content of fibers, even for 
Qf ≤ 35 kg/m3, which was not the case when applying the YLM. 
 
4.0  Strategy to built charts for the design of SFRC slabs on soil 
 
The force values, 

0.3( )FEM wF , obtained by FEM analysis, and the values of the corresponding 
variables of the parametric study (h, Ks and Qf) are organized in order to define a chart from which 
the most economic solution for a SFRC slab supported on soil can be determined. This chart is 
represented in Fig. 8 and its applicability is only restricted to the conceived and characterized 
SFRC and for the load configuration considered in the present work (corner load). For instance, 
when a load or 90 kN is acting on the corner of a slab supported on a soil with Ks=0.04 N/mm3, the 
following solutions are obtained (see Fig. 8): Qf = 15 kg/m3 and h = 238 mm; Qf = 25 kg/m3 and 
h = 216 mm; Qf = 35 kg/m3 and h = 202 mm; Qf = 45 kg/m3 and h = 174 mm. Taking into account 
the prices of the concrete and fibers, the most economic solution can be selected. 
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Figure 7. Relationship between the force and the 

deflection at the slab corner up to wR and w0.3. 
Figure 8. Design chart. 

 
5.0  Conclusions 
 
In the present work the applicability of the yield line method (YLM) for the analysis of industrial 
floors built with steel fiber reinforced concrete (SFRC) is assessed using the results obtained in a 
experimental research program where a cost competitive SFRC was conceived and their properties 
characterized. For this purpose, the results obtained with the YLM were compared with those 
calculated with a computer program based on the finite element method (FEM) in which an 
elasto-plastic smeared crack model was implemented. In this comparison, the influence of the slab 
thickness (h), the soil reaction modulus (Ks) and the amount of fibers (Qf) was taken into account. 
The ultimate force obtained with the YLM depends on the maximum bending moment (MR) of the 
SFRC slab. To evaluate MR, a cross section layered model was used. Since in industrial floors Qf, 
in general, does not exceed 45 kg/m3, MR values are similar for SFRC slabs with Qf ≤ 35 kg/m3. 
Considering that YLMF  and 

0.3( )FEM wF  designate the load carrying capacity of a SFRC floor 

determined with YLM and FEM, Table 3 shows that 
0.3( )FEM w YLMF F  increased with Qf and Ks. In 



general, 
0.3( )FEM w YLMF F  > 1 for SFRC slabs with Qf>15 kg/m3 and supported on a soil with 

Ks>0.01 N/mm3, showing that YLM is not capable of taking into account, directly, the benefits 
provided by fiber reinforcement in real flooring conditions. For SFRC slabs with Qf=15 kg/m3, 

0.3( )FEM w YLMF F  < 1, mainly when supported on week soils, which means that the YLM is not a safe 

design approach for these cases. The 
0.3( )FEM w YLMF F  ratio decreased with the thickness of the 

floor, being less than unit in slabs with h=240 mm, supported on a soil with Ks=0.01 N/mm3, and 
reinforced with Qf=25 kg/m3, which is a current fiber content in flooring applications. The 
particular values obtained in this research are restricted to the designed SFRC situations, but it is 
expected that the observed tendencies and the main conclusions can be extended to any FRC. 
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