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Summary. The simulation of the dynamic behavior of a structure subjected to sets of moving 
loads originated by vehicles whose structural behavior is also considered corresponds to a 
task not efficiently addressed by standard finite element packages. The capability of solving 
this type of problems has been introduced in the FEMIX 4.0 computational code by means of 
an integrated formulation, which includes equilibrium and compatibility equations, with 
unknowns that consist on displacements and interaction forces. Each system of linear 
equations is efficiently solved by considering the characteristics of each submatrix of the 
coefficient matrix. 
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1. INTRODUCTION 

The finite element simulation of the dynamic effects of moving loads on structures such as 
bridges can be performed with or without the consideration of the vehicle's own structure. 
When this is not taken into consideration only a set of moving loads has to be included in the 
structural model of the bridge. The simulation of the vehicle-structure requires the 
consideration of several independent meshes and their compatibilization in contact points. 
This compatibilization may require a connection between two nodal points, between a nodal 
point and a surface point or between two surface points. The first situation is simply a 
master/slave relationship between two degrees of freedom of the finite element mesh. The 
second situation requires the compatibilization of a nodal degree of freedom with the 
displacements of a point that is located in the surface of the finite element. These techniques 
have been implemented in FEMIX 4.0, which is a general purpose finite element computer 
program [1]. The third situation is not treated here. 
The dynamic analysis of a structure can be performed by direct integration of the dynamic 
equilibrium equations by means of one of the classical time history methods (e.g., Newmark 
method, Wilson-θ method). A slight improvement of the Newmark method was proposed 
in [2]. This new algorithm is termed Hilber-Hughes-Taylor (HHT) method or alpha-method, 
and is adopted in the present work. 
This paper describes the formulation of the contact between nodal points of the vehicle and 
internal points of a finite element. In each time step a linear behavior is assumed. Dynamic 
equilibrium equations in non prescribed degrees of freedom, in contact degrees of freedom 
and in prescribed degrees of freedom are separately developed. Contact compatibility 
equations between points of the vehicle and internal points of a finite element are also 
separately developed. All these equations constitute a single system of linear equations 
involving displacements, contact forces and reactions as unknowns. After the solution of this 
system of linear equations the displacements, velocities and accelerations at the current time 
step can be calculated and a new time step is started. This heterogeneous system of linear 
equations can be efficiently solved by means of the consideration of several submatrices with 
specific characteristics. 
A numerical application is presented to validate the formulation described in this paper. 

2. FEMIX COMPUTER CODE 

The HHT method has been implemented in the FEMIX 4.0 computer code [1], whose purpose 
is the analysis of structures by the Finite Element Method (FEM). This code is based on the 
displacement method, being a large library of types of finite elements already available, 
namely 3D frames and trusses, plane stress elements, flat or curved elements for shells, and 
3D solid elements. Linear elements may have two or three nodes, plane stress and shell 
elements may be 4, 8 or 9-noded and 8 or 20 noded hexahedra may be used in 3D solid 
analyses. This element library is complemented with a set of point, line and surface springs 
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that model elastic contact with the supports, and also a few types of interface elements to 
model inter-element contact. Embedded line elements can be added to other types of elements 
in order to model reinforcement bars. All these types of elements can be simultaneously 
included in the same analysis, with the exception of some incompatible combinations. The 
analysis may be static or dynamic and the material behavior may be linear or nonlinear. Data 
input is facilitated by the possibility of importing CAD models. Post processing is performed 
with a general purpose scientific visualization program named drawmesh [1]. 
Advanced numerical techniques are available, such as the Newton-Raphson method combined 
with arc-length techniques and path dependent or independent algorithms. When the size of 
the systems of linear equations is very large, a preconditioned conjugate gradient method can 
be advantageously used. 
In the context of the dynamic analysis of structures with moving loads and vehicle-structure 
interaction the behavior of the materials is considered linear and the displacements are 
assumed to be small enough to avoid geometrically nonlinear phenomena. 
The following section provides a detailed description of the formulation of the HHT method 
in the context of a dynamic analysis with vehicle-structure interaction. 

3. HHT METHOD WITH VEHICLE-STRUCTURE INTERACTION 

A simple example is used to introduce the types of degrees of freedom that are considered in 
the formulation of the vehicle-structure interaction in the context of a time step of the HHT 
method (see Figure 1). On the right, a simply supported beam with two spans (B1 and B2) is 
subjected to the contact of a vehicle, shown on the left. The structure of the vehicle is also 
composed of two beams (B3 and B4). Nodes 7, 8 and 9 are internal points of the beam B1. 
The location of these nodes may change between time steps, depending on the position of the 
vehicle. Eventual gaps between both structures (gi) can be easily considered in the 
compatibility equations, as will be shown later. 

1 7 8 9 32654

B1 B2B4B3

g i

 

Figure 1. Vehicle and structure: beams and nodal points. 

In each nodal point two degrees of freedom are considered (vertical displacement and 
rotation). Figure 2 shows the generalized displacements in nodal points (1 to 12), the 
generalized displacements of the contact points of the structure (13, 14 and 15), the 
interaction forces in the vehicle (X7, X9 and X11) and the interaction forces in the structure 
(Y13, Y14 and Y15). The interaction only involves the translational degrees of freedom. 
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Figure 2. Vehicle and structure: degrees of freedom and interactions forces. 

The following classification of the degrees of freedom is considered: 

• F – free; 
• X – interaction (vehicle); 
• P – prescribed; 
• Y – interaction (structure). 

This classification is used later in this section. 
In the context of the HHT method, the dynamic equilibrium equation that involves the 
degrees of freedom in nodal points (1 to 12) is the following 

( ) ( ) ( ) pcpcpcc FαFαuKαuKαuCαuCαuM −+=−++−++ 111 &&&&  (1)

 

In this equation M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F are 
the applied generalized forces, u are the generalized displacements and α is the main 
parameter of the HHT method. When α = 0 the HHT method reduces to the Newmark 
method, and for other values of the parameter α, numerical energy dissipation is introduced in 
the higher modes. The superscript c indicates the current time step ( t + Δt ) and the 
superscript p indicates the previous one (t ). 
According to Figure 2 and to the classification indicated above, the F type degrees of freedom 
are the following: 2, 4, 6, 8, 10 and 12. The X type degrees of freedom correspond to the 
"supports" of the separated vehicle-structure, being the following: 7, 9 and 11. The P type 
degrees of freedom are the main structural supports 1, 3 and 5. The Y type degrees of freedom 
13, 14 and 15 consist on the internal displacements of beam B1 at the contact points. 
According to this classification of degrees of freedom, Eq. (1) can be expanded by 
considering several submatrices, yielding 
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(2)

 

In the F type degrees of freedom, 

YFYFF YdPF +=  (3)

 

being P the external loads applied in correspondence with each degree of freedom. Each 
component dij of dFY corresponds to the nodal force in the F type degree of freedom i, which 
is equivalent to a single load consisting of a unitary value of Yj (see Figure 2). 
In the X type degrees of freedom, 

XXXXX XIPF +=  (4)

 

being IXX the identity matrix with an appropriate size. 
In the P type degrees of freedom, 

PYPYPP RYdPF ++=  (5)

 

being RP the reactions. 
According to Figure 2, equilibrium equations in the contact degrees of freedom can be 
written, yielding 

XY XY −=  (6)

 

Since the number of Y type degrees of freedom coincides with the number of X type degrees 
of freedom, the subscript Y may be replaced with X. 
Eq. (6) is then substituted into Eq. (2), leading to 
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Eq. (7) is equivalent to the following three equations 
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By placing all terms containing unknown variables in the first member, Eq.s (8) and (9) result 
in 
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After the solution of the system of linear equations only the current reactions remain 
unknown. These can be calculated with the following equation 
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which is equivalent to Eq. (10). 
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Eq. (11) can be written as 
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being FF  defined by 
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According to the Newmark method, the velocity and the displacement in the F type degrees of 
freedom, at the current time step (t + Δt ), can be defined as [3] 
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These equations are also used in the HHT method. The parameter γ defines a linear weighting 
between the influence of the initial and final accelerations on the velocity variation and the 
parameter β defines a similar weighting of the accelerations on the displacement variation. 
These parameters influence the stability and accuracy of the HHT method. 
Solving Eq. (17) for c

Fu&&  gives 
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Substituting c
Fu&&  given by Eq. (18) into Eq. (16) yields 
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This equation can be rewritten as 
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which is equivalent to 
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By replacing F with X in Eq.s (16) and (17), and performing a similar rearrangement, one has, 
by analogy with Eq.s (18) and (21), 
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The substitution of Eq.s (18), (21), (22) and (23) into Eq. (14) yields 
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⎜⎜
⎝

⎛
−+

Δ
−

Δ
++

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
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−Δ+⎟⎟

⎠

⎞
⎜⎜
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⎜⎜
⎝

⎛
−−

Δ
−

Δ
−

Δ
+

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
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&&&

&&&

&&&

 

(24)

 

Rearranging this equation one has 
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( ) ( )

( ) ( ) ( )

( )

( ) ⎥
⎦
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⎣
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⎣

⎡
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F
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β
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2

 

(25)

 

which is equivalent to the following compact form 

( ) F
c
XFX

c
XFX

c
FFF FXdαuKuK =+++ 1  (26)

 

being 

( ) ( ) FFFFFFFF KαCAαMAK ++++= 11 10  (27)

( ) ( ) FXFXFXFX KαCAαMAK ++++= 11 10  

[ ] [ ]
( ) [ ] ( ) [ ]p

X
p
X

p
XFX

p
F

p
F

p
FFF

p
X

p
X

p
XFX

p
F

p
F

p
FFFFF

uAuAuACαuAuAuACα

uAuAuAMuAuAuAMFF

&&&&&&

&&&&&&

541541

320320

11 ++++++++

++++++=
 

(28)

20
1
tβ

A
Δ

=  
tβ
γA
Δ

=1  
tβ

A
Δ

=
1

2  
(29)

1
2
1

3 −=
β

A  14 −=
β
γA  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−Δ= 1

25 β
γtA  

 

Eq. (12) can be rearranged yielding 
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( ) ( )
( ) ( ) ( ) X

c
XXX

c
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c
FXF

c
XXX

c
FXF

c
XXX

c
FXF
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=+−++++
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111

11 &&&&&&
 

(30)

 

being XF  defined by 

( )
( )
( ) p

PXP
p
XXX

p
FXF

c
PXP

p
PXP

p
XXX

p
FXF

c
PXP

c
PXP

p
XXX

p
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XX
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uMXIαPαPαF

++++−

++++−

−−−+=

1

1

1

&&&&

&&

 

(31)

 

The substitution of Eq.s (18), (21), (22) and (23) into Eq. (30) yields 
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F
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(32)

 

Rearranging this equation yields 
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(33)

 

which is equivalent to the following compact form 

( ) X
c
XXX

c
XXX

c
FXF FXIαuKuK =+−+ 1  (34)

 

being 

( ) ( ) XFXFXFXF KαCAαMAK ++++= 11 10  (35)

( ) ( ) XXXXXXXX KαCAαMAK ++++= 11 10  

[ ] [ ]
( ) [ ] ( ) [ ]p

X
p
X

p
XXX

p
F

p
F

p
FXF

p
X

p
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p
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(36)

 

The parameters A0 to A5 are defined by Eq. (29). 
In matrix notation, Eq.s (26) and (34) become 

( )
( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
+−
+

X

F

c
X

c
X

c
F

XXXXXF

FXFXFF

F

F

X
u
u

IαKK
dαKK

1
1

 

(37)

 

In all the interaction degrees of freedom, and for the current time step (t + Δt ), a compatibility 
equation is required. The subtraction between a displacement of the vehicle and the 
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corresponding displacement of the structure must be equal to the gap gi (see Figures 1 and 2). 
This compatibility equation can be written as 

c

X

c
Y

c
X guu =−  (38)

 

being 
c
YYY

c
PYP

c
FYF

c
Y Yfucucu ++=  (39)

 

In this equation, each component cij of cYF corresponds to the displacement in the Y type 
degree of freedom i for a single unit displacement in the F type degree of freedom j (see 
Figure 2). The components of matrix cYP have a similar meaning. Each component fij of fYY 
corresponds to the displacement in the Y type degree of freedom i for a single load consisting 
of a unitary force on the Y type degree of freedom j (see Figure 2). All the components of the 
matrix fYY are calculated assuming null generalized displacements in the F type and P type 
degrees of freedom. When the finite elements are based on the beam theory the fYY matrix is 
not null. In finite elements whose formulation is based on shape functions the fYY matrix is 
null. 
Since the number of Y type degrees of freedom coincides with the number of X type degrees 
of freedom, the subscript Y may be replaced with X. Substituting Eq. (6) into Eq. (39), yields 

c
XXX

c
PXP

c
FXF

c
Y Xfucucu −+=  (40)

 

Substituting Eq. (40) into Eq. (38) gives 
c
PXP

c
X

c
XXX

c
X

c
FXF ucgXfuuc +=++−  (41)

 

Multiplying both members of Eq. (41) by the constant ( )α+− 1  results in 

( ) ( ) ( ) ( ) ( ) c
PXP

c

X

c
XXX

c
X

c
FXF ucαgαXfαuαucα +−+−=+−+−+ 11111  (42)

 

Rewriting Eq.s (37) and (42) in matrix form leads to 
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⎥
⎥
⎥
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⎥
⎥
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⎢
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⎣
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−+−+
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+

X

X

F

c
X

c
X

c
F

XXXXXF

XXXXXF

FXFXFF

g
F

F

X
u
u

fαIαcα
IαKK

dαKK

111
1

1
 

(43)

 

being 

( ) ( ) c
PXP

c

XX
ucαgαg +−+−= 11  (44)
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It is possible to demonstrate that in Eq. (43) the coefficient matrix of the system of linear 
equations is symmetric. 

4. NUMERICAL EXAMPLE 

In order to validate the proposed formulation, a simply supported beam subjected to a moving 
sprung mass is analyzed. This example is solved by the present direct method and by an 
iterative method proposed in [4] and [5]. The obtained results are also compared with those 
published in [6] and [7]. 
Figure 3 shows a simply supported beam subjected to a moving sprung mass. The properties 
of the simply supported beam coincide with those used by Yang and Wu [8], being the span 
L = 25.0 m and its geometrical and mechanical properties the following: Young’s modulus 
E = 2.87 GPa, Poisson’s ratio υ = 0.2, moment of inertia I = 2.90 m4 and mass per unit length 
m = 2303 kg/m. The beam is divided in 50 finite elements. 
The sprung mass is modeled with two vertical beams. The upper beam simulates the mass 
Ms = 5750 kg and the lower beam simulates the stiffness k = 1595×103 N/m of the vehicle. 
The constant velocity of the sprung mass is v = 100 km/h, its frequency is fv = 2.65 Hz and its 
mass ratio Ms/(mL) is 0.1. The damping effects of the bridge and vehicle are considered to be 
negligible. 
In the numerical integration by the HHT method the following parameters are considered: 
Δt = 0.005 s, β  = 0.25, γ = 0.50 and α  = 0. The total number of time steps is 180. 

MS

k

v

25.0
 

Figure 3. Simply supported beam subjected to a moving sprung mass. 

The dynamic response of the beam subjected to the moving sprung mass, in terms of 
displacement and acceleration at the midpoint, is plotted in Figure 4. 
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Figure 4. Vertical deflection and acceleration at the midpoint of the beam. 

The sprung mass deflection and acceleration are plotted in Figure 5. 

-0.0030

-0.0025

-0.0020

-0.0015

-0.0010

-0.0005

0.0000

0.0005

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (s)

Sp
ru

ng
 m

as
s d

ef
le

ct
io

n 
(m

)

Direct method with interaction

Iterative method with interaction

 
-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (s)

Sp
ru

ng
 m

as
s a

cc
el

er
at

io
n 

(m
/s

2 )

Direct method with interaction

Iterative method with interaction

 

Figure 5. Vertical deflection and acceleration of the sprung mass. 

Figure 6 shows the variation of the contact force between the sprung mass and the simply 
supported beam. 
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Figure 6. Contact force between the sprung mass and the simply supported beam. 

A perfect agreement can be observed between the results obtained with the proposed 
formulation and those published in [6] and [7]. 
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5. CONCLUSIONS 

In the present work an integrated model whose aim is the dynamic analysis of structures by 
the Hilber-Hughes-Taylor method is proposed. This algorithm treats the interaction between 
moving vehicles and a structure such as a bridge. This work provides a significant 
improvement relatively to the method proposed in [4] and [5], since the compatibility between 
vehicle and structure is no longer imposed by an iterative method, but by means of an 
integrated formulation that considers as variables displacements and contact forces. The 
governing system of equations comprises dynamic equilibrium equations and compatibility 
equations. The system of linear equations that arises at each time step is efficiently solved by 
Gaussian elimination, by considering several submatrices and their own characteristics. A 
significant improvement in terms of efficiency and precision could be observed. 
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