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ABSTRACT 

The dynamic behavior of railway bridges carrying high-speed trains can be analyzed with or 
without the consideration of the vehicle's own structure. However, due to the amount of 
kinetic energy carried at high speeds, the train may interact significantly with the bridge, 
especially when resonance occurs. Equally important is the riding comfort and the stability of 
the track and train cars, which are usually the most critical limit states in the design of this 
type of structures. With the aim of studying this problem a computer code was developed, 
being the interaction between the bridge and the train implemented by means of contact 
conditions between each train wheel (nodal point) and the structure (point inside a finite 
element). The treatment of the interaction between a train wheel and a point on the surface of 
a finite element is directly and efficiently implemented by means of an extended stiffness 
matrix, which includes stiffness, flexibility and additional terms that stem from the 
compatibility equations between the displacements of the vehicle and the bridge. This 
methodology was applied to the study of the dynamic behavior of a bowstring arch bridge and 
proved to be very accurate and efficient. 



 

2. INTRODUCTION 

The dynamic behavior of railway bridges carrying high-speed trains can be analyzed with or 
without the consideration of the vehicle's own structure. The simulation of the train-bridge 
system requires several independent submeshes and the consideration of contact conditions 
that represent their interaction. 

Delgado and Cruz [1] and Calçada [2] developed a computational methodology to analyze 
the train-bridge interaction. This methodology was implemented in a previous version of 
FEMIX, which is a general purpose finite element computer program [3]. The developed 
algorithm is very versatile, allowing the modeling of any structure and vehicle using 3D beam 
elements. However the treatment of the contact conditions between the independent 
submeshes is performed by an iterative process, which can be inefficient. 

This paper describes the formulation of the contact between nodal points of the vehicle and 
internal points of a finite element. Dynamic equilibrium equations in non prescribed degrees 
of freedom, in contact degrees of freedom and in prescribed degrees of freedom are separately 
developed. Contact compatibility equations between points of the vehicle and internal points 
of a finite element are also separately developed. All these equations constitute a single 
system of linear equations involving displacements, contact forces and reactions as 
unknowns. After the solution of this system of linear equations the displacements, velocities 
and accelerations at the current time step can be calculated and a new time step is started. 
This heterogeneous system of linear equations can be efficiently solved by means of the 
consideration of several submatrices with specific characteristics. 

The new formulation described here is applied to the analysis of the dynamic behavior of 
the São Lourenço bridge, which is a bowstring arch bridge. The bridge is located in the North 
Line of the Portuguese railway system, in a section that was recently upgraded to allow the 
passage of the Alfa pendular train at greater speeds. The numerical model was validated with 
the results of the ambient vibration test and those measured during several passages of the 
Alfa pendular train. The dynamic response of the train-bridge system was calculated for train 
speeds exceeding the allowable speed for that section of the North Line. 

2. HHT METHOD WITH TRAIN-BRIDGE INTERACTION 

A simple example is used to introduce the types of degrees of freedom that are considered in 
the formulation of the vehicle-structure interaction in the context of a time step of the 
Hilber-Hughes-Taylor method (see Figure 1). On the right, a simply supported beam with two 
spans (B1 and B2) is subjected to the contact of a vehicle, shown on the left. The structure of 
the vehicle is also composed of two beams (B3 and B4). Nodes 7, 8 and 9 are internal points 
of the beam B1. The location of these nodes may change between time steps, depending on 
the position of the vehicle. Eventual gaps between both structures (gi) can be easily 
considered in the compatibility equations, as will be shown later. 

 
Figure 1. Vehicle and structure: beams and nodal points 

In each nodal point two degrees of freedom are considered (vertical displacement and 
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rotation). Figure 2 shows the generalized displacements in nodal points (1 to 12), the 
generalized displacements of the contact points of the structure (13, 14 and 15), the 
interaction forces in the vehicle (X7, X9 and X11) and the interaction forces in the structure 
(Y13, Y14 and Y15). The interaction only involves the translational degrees of freedom. 

 
Figure 2. Vehicle and structure: degrees of freedom and interactions forces 

The following classification of the degrees of freedom is considered: 

• F – free; 
• X – interaction (vehicle); 
• P – prescribed; 
• Y – interaction (structure). 

This classification is used later in this section. 
In the context of the Hilber-Hughes-Taylor method (HHT), the dynamic equilibrium 

equation that involves the degrees of freedom in nodal points (1 to 12) is the following 
 

( ) ( ) ( ) pcpcpcc αααααα FFuKuKuCuCuM −+=−++−++ 111 &&&&  (1)
 

In this equation M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F 
are the applied generalized forces, u are the generalized displacements and α is the main 
parameter of the HHT method. When α = 0 the HHT method reduces to the Newmark 
method, and for other values of the parameter α, numerical energy dissipation is introduced in 
the higher modes. The superscript c indicates the current time step (t + Δt ) and the superscript 
p indicates the previous one (t ). 

According to Figure 2 and to the classification indicated above, the F type degrees of 
freedom are the following: 2, 4, 6, 8, 10 and 12. The X type degrees of freedom correspond to 
the "supports" of the separated vehicle structure, being the following: 7, 9 and 11. The P type 
degrees of freedom are the main structural supports 1, 3 and 5. The Y type degrees of freedom 
13, 14 and 15 consist on the internal displacements of beam B1 at the contact points. 

According to this classification of degrees of freedom, Eq. (1) can be expanded by 
considering several submatrices, yielding 
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In the F type degrees of freedom, 

 
YFYFF YdPF +=  (3)

 
being P the external loads applied in correspondence with each degree of freedom. Each 

component dij of dFY corresponds to the nodal force in the F type degree of freedom i, which 
is equivalent to a single load consisting of a unitary value of Yj (see Figure 2). 

In the X type degrees of freedom, 
 

XXXXX XIPF +=  (4)
 

being IXX the identity matrix with an appropriate size. 
In the P type degrees of freedom, 

 
PYPYPP RYdPF ++=  (5)

 
being RP the reactions. 
According to Figure 2, equilibrium equations in the contact degrees of freedom can be 

written, yielding 
 

XY XY −=  (6)
 

Since the number of Y type degrees of freedom coincides with the number of X type 
degrees of freedom, the subscript Y may be replaced with X. 

According to [4], Eq. (2) is equivalent to the following three equations 
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being 
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In matrix notation, Eq.s (7) and (8) become 
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In all the interaction degrees of freedom, and for the current time step (t + Δt ), a 

compatibility equation is required. The subtraction between a displacement of the vehicle and 
the corresponding displacement of the structure must be equal to the gap gi (see Figures 1 
and 2). This compatibility equation can be written as 
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being 

 
c
YYY
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PYP
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In this equation, each component cij of cYF corresponds to the displacement in the Y type 

degree of freedom i for a single unit displacement in the F type degree of freedom j (see 
Figure 2). The components of matrix cYP have a similar meaning. Each component fij of fYY 
corresponds to the displacement in the Y type degree of freedom i for a single load consisting 
of a unitary force on the Y type degree of freedom j (see Figure 2). All the components of the 
matrix fYY are calculated assuming null generalized displacements in the F type and P type 
degrees of freedom. When the finite elements are based on the beam theory the fYY matrix is 
not null. In finite elements whose formulation is based on shape functions the fYY matrix is 
null. 

Since the number of Y type degrees of freedom coincides with the number of X type 
degrees of freedom, the subscript Y may be replaced with X. According to [4], Eq. (15) is 
equivalent to 
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Rewriting Eq.s (14) and (17) in matrix form leads to 
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being 
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It is possible to demonstrate that in Eq. (18) the coefficient matrix of the system of linear 

equations is symmetric. 

3. APPLICATION TO THE DYNAMIC ANALYSIS OF THE SÃO LOURENÇO 
BRIDGE 

3.1  Dynamic model of the bridge 

The bridge is located at the km +158.662 of the North Line of the Portuguese railway system, 
in a recently upgraded section for the passage of the Alfa pendular train at a maximum speed 
of 220 km/h. 

The bridge is a bowstring arch composed of two half-decks spanning 42 m with a single 
track in each [5]. Figure 3 shows a view of the bridge. Each deck consists of a 40 cm thick 
prestressed concrete slab suspended by two lateral arches (see Figure 4). The arches are 
linked in the upper part by transversal girders with a rectangular hollow section and diagonals 
in double angles that assure the bracing of the arches. 

 
Figure 3. São Lourenço bridge 

The bridge was modeled with 2D beam elements. The influence of the deck-track 
composite effect in the dynamic behavior of railway bridges, due to the transmission of shear 
stresses between the deck and the rails at the ballasted layer, was treated in [6] and considered 
in the current finite element model (see Figure 4). 

 
Figure 4. FEM model of the bridge 

The first three vertical mode shapes of the bridge (1V, 2V and 3V) are represented in 
Figure 5. 



 

1st vertical mode (1V): f  = 4.25 Hz 2nd vertical mode (2V): f = 6.20 Hz 

  
3rd vertical mode (3V): f = 9.94 Hz 

 
Figure 5. Mode shapes and corresponding frequencies 

3.2   Dynamic model of the Alfa pendular train 

The Alfa pendular train is composed of six carriages. Each carriage has two bogies with two 
axles each (Figure 6). The total weight of the composition is 298.3 t, tare weight, and 323.3 t 
for a regular loading. The maximum weight per axle is 14.4 t and the total length of the 
composition is 158.90 m. 

 

 
Figure 6. Alfa pendular train 

The dynamic model of the train is shown in Figure 7 and consists of rigid bodies simulating 
the vehicle box (mass Mc) and the bogies (mass Mb), springs with stiffness Kp (or Ks) and 
dashpots with damping cp (or cs) simulating the primary (or secondary) suspensions, springs 
with stiffness Kh simulating the wheel-rail contact and masses Me simulating the axles and 
wheels. The train is modeled with 2D beam elements (see Figure 7). 
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Figure 7. Dynamic model of the Alfa pendular train 



 

3.3  Comparison between numerical and experimental results 

In order to validate the numerical model an experimental campaign was undertaken, which 
included an ambient vibration test and several measurements of passages of the Alfa pendular 
train [6]. The ambient vibration test was used to identify the dynamic properties of the 
structure, namely its natural frequencies, mode shapes and damping coefficients. The vertical 
accelerations at some points of the deck were measured during several passages of the Alfa 
pendular train. A good agreement between the natural frequencies obtained with the 
numerical model and the experimental values can be observed (see Table 1). 

 
Frequency (Hz) Mode Experimental Numerical 

1V 4.49 4.25 (-5.4%) 
2V 6.05 6.20 (+2.5%) 
3V 9.96 9.94 (-0.2%) 

Table 1: Experimental and numerical natural frequencies 

A dynamic analysis considering the train-bridge interaction was performed using the HHT 
method with constant average acceleration, i.e., with α = 0, β = 1/4 and γ = 1/2 [7] and a time 
step equal to 0.002 s. Rayleigh damping is adopted in the present study. The damping ratios 
of modes 1V and 3V are equal to 1.4% and 2.4%, respectively (see Table 1). 

Figure 8 compares the numerical and experimental results obtained for the vertical 
acceleration of the deck at point A (see Figure 4), for the passage of the Alfa pendular train at 
155 km/h. Both results are filtered by means of a low-pass Chebyshev (type II) filter with a 
cut-off frequency of 30 Hz, in accordance with the recommendations of EN1990-A2 [8]. 
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Figure 8. Vertical acceleration of the deck for the passage at 155 km/h 

3.4  Dynamic response of the train-bridge system 

Several dynamic analyses were performed for speeds ranging between 140 an 420 km/h, with 
a 5 km/h step, consisting of 57 simulated passages. 



 

Figure 9 shows the time histories of the vertical acceleration at the span quarter-point for 
the passage of the Alfa pendular train at 155 km/h and 395 km/h, and at mid-point, at 
155 km/h and 295 km/h. 
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Figure 9. Vertical acceleration: a) quarter-point; b) mid-point 

Figure 10 shows the maximum vertical acceleration for speeds ranging between 140 and 
420 km/h. 
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Figure 10. Maximum vertical acceleration: a) quarter-point; b) mid-point 

Resonance peaks can be observed in Figure 10 for train speeds of 395 km/h, at the span 
quarter-point, and for train speeds of 195 km/h, 230 km/h, 295 km/h and 310 km/h, at 
mid-point. 

The resonance phenomena may occur for trains with regularly spaced axles, traveling at 
critical speeds defined by [9] 
 

,...41,31,21,...,4,3,2,1, == i
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where d is the characteristic length and nj is the jth natural frequency of the bridge. The 

characteristic length is a distance (many times repeated) between the vehicles or axles, that at 
some critical speeds may induce a periodic excitation of the bridge and cause the resonance 
phenomenon. 

The characteristic length of the Alfa pendular train is 25.9 m (see Figure 7). According to 
Figure 10 and to Eq. (20), the critical speeds are: i) taking into consideration the span 
quarter-point and an excitation of the structure with a frequency which is equal to the 
mode 1V frequency (vres = 25.9×4.25/1×3.6 = 396 km/h ≈ 395 km/h); ii) considering the 
mid-point and an excitation with a frequency which is equal to 1/2 and 1/3 of the frequency of 
mode 2V (vres = 25.9×6.20/2×3.6 = 289 km/h ≈ 295 km/h and vres = 25.9×6.20/3×3.6 = 



 

193 km/h ≈ 195 km/h) and 1/3 and 1/4 of the frequency of mode 3V (vres =25.9×9.94/3×3.6 = 
309 km/h ≈ 310 km/h and vres = 25.9×9.94/4×3.6 = 232 km/h ≈ 230 km/h). 

The consideration of the train-bridge interaction in the dynamic analysis is particularly 
useful since it allows for an accurate evaluation of the vibrations of the rail cars, and, 
consequently, for an assessment of the riding comfort of the passengers. Figure 11 shows the 
time histories of the vertical acceleration in the first and last car bodies at a speed of 
155 km/h, for which there is no resonance, and at a speed of 395 km/h, for which resonance 
of mode 1V occurs. 
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Figure 11. Vertical acceleration: a) first car body; b) last car body 

Figure 12 shows the maximum vertical acceleration in the first and last car bodies of the 
train for speeds ranging between 140 and 420 km/h. The maximum level of acceleration 
occurs in the last car body for speeds that correspond to the resonance of the bridge. 
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Figure 12. Maximum vertical acceleration: a) first car body; b) last car body 

The dynamic analyses with train-bridge interaction were performed for 57 different speeds, 
which corresponded to a total execution time of 2624 s (≈44 min) in a 2.13 GHz personal 
computer. The bridge submesh has 1860 non prescribed degrees of freedom and the train 
submesh has 192. The total execution time of each analysis corresponds to the period between 
the entry of the first axle in the bridge and the exit of the last axle. 

4. CONCLUSIONS 

In the present work an integrated model whose aim is the dynamic analysis of structures by 
the Hilber Hughes Taylor method is proposed. This algorithm treats the interaction between 
moving vehicles and a structure such as a bridge. This work provides a significant 
improvement relatively to the method proposed in [1] and [2], since the compatibility between 
vehicle and structure is no longer imposed by an iterative method, but by means of an 
integrated formulation that considers as variables displacements and contact forces. The 



 

governing system of equations comprises dynamic equilibrium equations and compatibility 
equations. The system of linear equations that arises at each time step is efficiently solved by 
Gaussian elimination, by considering several submatrices and their own characteristics. 

The proposed formulation is applied to the dynamic behavior of a bowstring arch bridge. 
The numerical model was validated with the experimental results of the ambient vibration test 
and those measured during several passages of the Alfa pendular train. The dynamic response 
of the train-bridge system was calculated for train speeds only occurring in high-speed lines, 
allowing for a better understanding of the behavior of the system and its resonance effects. A 
significant improvement in terms of efficiency could also be observed. 
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