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Abstract 
This paper describes the implementation and validation of a numerical methodology which can be used in 
the prediction of vehicle induced vibrations. The presented methodology is formulated in the time domain 
for the three-dimensional case. Although presented in the context of vehicle induced vibrations it can be 
adopted in the study of general problems of dynamic soil-structure interaction in which the structure lies 
on the surface of the soil. The method is based on the coupling of the fundamental Green functions to a 
finite element code (FEMIX). Some relevant aspects of the implementation are briefly discussed and a 
numerical example based on the study of the dynamic response of a slab resting on a homogeneous 
halfspace and subjected to the passage of a moving load is presented. 

1 Introduction 

A considerable effort has been undertaken in recent years to develop numerical methods for the study of 
problems involving a dynamic soil-structure interaction (SSI). The simulation of problems involving train 
induced vibrations requires an adequate consideration of the dynamic track-soil interaction. The expansion 
of the high-speed railway lines contributed to the actual relevance of this issue. 

Due to its versatility, the Finite Element Method (FEM) is a very popular and attractive tool. However, 
this method presents some limitations when used in the simulation of this type of problems. Due to its 
semi-infinite nature, the soil cannot be fully discretized and, consequently, some type of domain 
truncation is required. These artificial boundaries lead to spurious reflections, which affect the behaviour 
of the modelled part of the system. If the discretized domain is very large (in order to move the artificial 
boundaries away from the region of the model with interest), the problem becomes computationally 
intractable. Problems related to spurious reflections may be minimized (but not fully eliminated) using 
absorbing boundaries (viscous dampers connected to the boundaries of the finite element model) [1], 
Perfectly Matched Layers (PML) [2] or infinite elements [3]. 

As an alternative, some authors applied hybrid methods combining the Finite Element Method (FEM) and 
the Boundary Element Method (BEM) in order to take advantage of the versatility of FEM and the 
capability of the BEM to simulate infinite media [4]. 

Other authors developed numerical models based on a 2.5D concept, e.g., 2.5D finite/infinite elements 
(FEM/IEM) [5] and 2.5D FEM/BEM [6]. These procedures are very efficient from the computational 
point of view. The main drawback of these models is associated with the assumption of invariability of the 
geometry and properties of the structure along one direction. Moreover they are usually limited to linear or 
equivalent linear analyses. 

The present paper describes the implementation and application of a three-dimensional numerical 
methodology formulated in the time domain and based on the coupling of the fundamental Green 
Functions (GF) to a FE code [7, 8]. These functions reproduce the behaviour of the soil while the FE 
model enables the simulation a complex superstructure. The advantages of this procedure are related to the 
possibility of modelling structures with complex geometries which are not invariant along any direction, 
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as well as the capability of performing nonlinear analyses. The main drawback of these models is their 
high cost in terms of time and computational resources. 

2 Brief description of the methodology 

This paper presents the implementation and application of a numerical methodology which can be used in 
the prediction of train induced vibrations. In spite of being presented in the context of problems involving 
soil-track interaction, it can be adopted in the study of generic three-dimensional problems of dynamic SSI 
for the case of superstructures lying on the surface of the soil. The presented procedure is formulated in 
the time domain and enables the consideration of complex geometries and nonlinearities in the simulation 
of the behaviour of the superstructure. 

The presented methodology is based on the division of the system into two independent substructures: 
a) the superstructure and b) its supporting soil. As referred to above, the superstructure is simulated using 
the FEM while the soil is modelled by means of the fundamental Green functions of a halfspace or a 
layered halfspace with linear elastic behaviour. In this work the soil surface is assumed to be plane and 
horizontal. The soil-superstructure coupling is established at the interaction surfaces by means of 
equilibrium and compatibility equations. 

2.1 Description of the superstructure 

The superstructure includes all parts of the system which are located above the soil and whose behaviour 
is simulated by means of the FEM. The dynamic equation of the superstructure can be written as 

M u + C u + K u = Pɺɺ ɺ  (1) 

where M , C  and K  are the mass matrix, damping matrix and stiffness matrix of the superstructure, u  is 
the displacement vector and P  is the vector of external forces. A dot over a variable denotes 
differentiation with respect to time. 

2.2 Description of the soil 

The soil behaviour is described by means of the fundamental Green functions, which define the dynamic 
response of the medium due to an unit load applied at any point. The developed tool enables the 
possibility of considering the soil as a homogeneous halfspace with linear elastic behaviour. 

In this procedure the continuous time histories of the soil pressures are approximated by a sequence of 
rectangular pulses whose value corresponds to the average of the initial and final values of the respective 
time step. 

The soil-superstructure interaction surface is discretized with interaction elements and a uniform pressure 
is assumed within each element. This division is defined in accordance with the FE mesh in such a way 
that each interaction element corresponds to a face of a finite element contacting with soil. 

The dynamic response of the surface of the soil due to pressure loads (applied in the surface associated 
with the interaction elements) with rectangular time-dependence must be calculated. This response is 
calculated by subtracting the responses due to a pair of loads with Heaviside time-dependence applied at 
consecutive time steps. 

The displacements at the surface of the soil due to a point load with Heaviside time-dependence applied at 
the surface of the soil can be calculated analytically in time-space domain for the case of a homogeneous 
halfspace [9]. Nevertheless, these analytical solutions neglect the effect of damping and are limited to 
some values of the Poisson's ratio. 
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When dealing with a layered halfspace, the response is computed numerically using the Direct Stiffness 
Method available in the Elastodynamics Toolbox - EDT [10, 11]. In this case the Green functions are 
calculated in the frequency-wavenumber domain and are then transformed to time-space domain. 

As explained above, this method requires the calculation of the soil response due to a pressure load with 
Heaviside time-dependence. When the soil response is calculated analytically, the solution due to a 
pressure is obtained by spatially integrating the solution due to a point load. When the Green functions are 
calculated in the frequency-wavenumber domain, the desired response can be obtained using a more 
efficient procedure that consists on the solution by the wavenumber content of the loaded area and by the 
frequency content of a Heaviside load before the transformation to the time-space domain. 

In this manner, the matrix j
Η  ( )j<1 =H 0  is used to calculate the soil displacement vector jw  observed 

at time step jt j t= ∆  due to an interface pressure q  applied at the time 0t =  and kept constant 
(Heaviside time dependence), being 

j j=  w H q  (2) 

Considering the matrix kF  defined as 

( )k+1 k-1

k
-

=
2

H H
F  (3) 

equation (2), which relates the soil displacements at a specific time step with the time evolution of the soil 
pressures, can be re-written as 

( )
i

i j-1 i-j+1 0 i

j=2

=  + ∑w F q F q  (4) 

2.3 Soil-superstructure coupling 

The soil-superstructure coupling is established at the interaction surfaces by enforcing the equilibrium of 
forces and making the displacements compatible. 

It is imposed that the displacements at each interaction point (soil) are compatible with the displacements 
at the corresponding point of the FE model. The relation between the nodal displacements of the FE, u , 
and the displacements of the interaction points (superstructure), v , can be written as 

u=v T u  (5) 

where uT  represents a transformation matrix whose terms result from the FE shape functions evaluated at 
the interaction points. Thus, the displacements are made compatible by imposing 

=w v  (6) 

On the other hand, the equilibrium of forces at the interaction surface is guaranteed by imposing that the 
action of the soil on the structure has the same magnitude as the action of the structure on the soil and 
opposite signal. Thus, it is necessary to calculate the nodal interaction forces, Q , corresponding to the soil 
pressures, q , by means of the following equation 

q= -Q T q  (7) 

where qT  represents a transformation matrix which results form the integration of the FE shape functions 

over the area of the interaction elements. 

Adding the interaction forces, Q , to equation (1) one has 
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i i i i i
q +  +  = -M u C u K u P T qɺɺ ɺ  (8) 

Taking into account equation (4) and performing some mathematical work, equation (8) can be written as 

ii i i +  + ( + )  = +act histM u C u K K u P Qɺɺ ɺ  (9) 

where 

( ) 10
q u=

−actK T F T  (10) 

and 

( ) ( )1 i
0 j-1 i-j+1

q
j=2

=
−

∑histQ T F F q  (11) 

The influence of the supporting soil on the behaviour of the system is represented by means of the 
dynamic stiffness matrix of the soil actK  and the vector of the historical interaction forces histQ . Since full 

contact is assumed (equation (6)), the stiffness matrix actK  is calculated and added to the stiffness matrix 
of the structure only once before the first time step. On the other hand, as the vector histQ  changes with 
time, it has to be calculated and added to the system of equations before processing each time step. The 
dynamic equation of the system, defined by (9), can be solved by a classical time step integration 
procedure as the Newmark Method. 

2.4 Symmetry of the stiffness matrix of the soil 

According to [7], when all the interaction elements are identical and the interaction stresses are assumed to 

be uniform within each element, the matrix 0F  is symmetric. However, these conditions do not guarantee 
the symmetry of the stiffness matrix of the soil actK . Thus, it is possible to conclude that actK  is 
symmetric only when 0F  is symmetric and simultaneously the following condition is ensured 

T
q u= cT T  (12) 

where c  is a scalar. In this work, equation (12) is only valid when the elements involved in the interaction 
are 8-node solid elements. 

2.5 Damping 

Damping cannot be neglected in the simulation of the behaviour of structures and soil. In the structure the 
damping is considered viscous (frequency dependent) and defined by means of a Rayleigh damping matrix 
(which results from a linear combination of mass and stiffness matrices). On the other hand, damping in 
the soil is assumed as hysteretic (frequency independent). The calculation of Green functions enables the 
consideration of this damping model by means of  the following complex parameters [10, 11] 

( ) ( )( )2 2 1 PC
λ+ µ = λ+ µ ± D i  (13) 

( )1C Sµ = µ ± D i  (14) 

where λ  and µ  are the Lamé constants and PD  and SD  represent the hysteretic material damping ratio 
for the dilatational waves and the shear waves, respectively.  
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2.6 Response of points lying on the surface of the soil 

It is important to note that, knowing the time history of the interaction stresses, the calculation of the 
response on the surface soil is very simple. In fact, the displacement of a point *ξ  lying on the surface of 

the soil at the instant jt = j t∆  is given by 

* *

j
j-i i

ξ ξ
i=1

(j t) = ∆ ∑w F q  (15) 

where *

k

ξ
F  is obtained as described previously. 

3 Implementation aspects  

3.1 Stability of the process 

In the developed tool, the dynamic equation of the system, defined by (9), is solved by means of the 
Newmark Method. In dynamic problems formulated by the FE method, the Newmark Method is 
unconditionally stable. However, in the present problem, the coupling of the structure and the supporting 
soil changes this scenario. The stability of the coupled methodologies (FEM-BEM/GF) has been studied 
by some authors [7, 12]. In their works, the authors concluded that the relation between the time 
discretization and the spatial discretization influences the stability of the process. In particular, Bode [7] 
suggests a reference time step t∆  equal to 

2 R

d
t =

C
∆  (16) 

where d  represents the maximum distance between points of each interaction element (for square 
elements d  is the diagonal) and RC  represents the Rayleigh wave velocity of the half-space. 

In general, the process is stable when the reference value for time step is used. However, for a time step 
smaller than the reference one the process does not yield accurate results. 

One feature that can help in the stability of the procedure is the consideration of the damping of the soil. In 
the numerical example presented in the section 4 of this work, the presence of damping in the soil turns 
the process stable. The stability wouldn’t be achieved even if a time step ten times greater than the 
reference one was used. In the proposed methodology, the damping of the soil is considered in the 
calculation of the Green’s functions. As referred to above, one uses hysteretic damping (i.e., damping 
which is independent of frequency) by considering complex elastic parameters for the soil [10, 11]. 

In equation (16), it can be observed that the smaller the time step t∆  is, the smaller the discretization 
width d  of the interface surface must be. For problems involving moving loads at large speeds, the 
accurate reproduction of the variation of the main variables (displacements and stresses) requires a small 
time step t∆  and therefore a small value of d . If the FE mesh is defined with each interaction element in 
correspondence with one finite element, the total number of degrees of freedom (DOF) in equation (9) 
becomes very large. This might cause the exhaustion of the available memory of the computer or lead to 
unacceptably long execution times. For this reason, one allows that each finite element contacts with more 
than one interaction element, or in other words, the interaction elements mesh and the FE mesh might not 
match at the interaction surface. With this procedure, the time step t∆  and the width d  of the interface 
elements can be reduced without increasing the number of DOFs of the FE mesh. However, the number of 
DOFs associated to the soil and the computational effort of computing the convolutions in equation (11) 
increase. 
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3.2 Relaxed  coupling 

In some problems, the dominant degrees of freedom are the vertical ones, i.e., the relevant loads and 
displacements follow the vertical direction. In this kind of problems, sometimes it is reasonable enough to 
consider that the structure can slide horizontally in relation to the underlying ground. In such problems, 
the compatibility of displacements is enforced only in the vertical direction and it is assumed that the 
structure only transmits vertical pressure to the ground (this case is usually referred as relaxed coupling, 
whereas when no simplification is done it is named full coupling). Hence, the soil variables (tractions and 
displacements) are reduced to one third and so the time required to evaluate the convolution represented in 
equation (11) is also reduced. For the problem presented in the section 4 of this work, the full coupling or 
relaxed coupling conditions are schematically represented in Figure 1. 

 
Figure 1: Full coupling vs. relaxed coupling 

3.3 Symmetric structures 

A wide range of structural problems involves structures that have symmetric geometries. In these cases, 
the analysis of the problem can be performed by analyzing two structures that consist in a half part of the 
original structure. In one of the structures, the displacements perpendicular to the plane of symmetry at the 
same plane are fixed and the acting load consists on the symmetric part of the load. In the other structure, 
the displacements in the directions of the plane of symmetry are fixed at the same plane and the acting 
load consists on the anti-symmetric part of the load. These cases correspond to the symmetric and anti-
symmetric cases, respectively. The total response of the structure is obtained by combining the response of 
the analysis of each structure. 

When the problem involves soil-structure interaction, considering the adequate boundary conditions in the 
soil involves blocking some displacements inside the soil. In principle, the displacements must be fixed 
within all the depth of the soil (until infinity in the case of a half space), and so, following this approach, 
the problem becomes more complicated than the original one. However, the initial problem can still be 
simplified if one only imposes the proper boundary conditions to the structure, while for the ground one 
imposes symmetry/anti-symmetry of the applied tractions. The needed impositions are represented in 
Figure 2 both for the symmetric and anti-symmetric case. 

Concerning the algorithm of the procedure, this type of analyses only requires that the flexibility matrices 
be condensed by adding (or subtracting) columns of respective mirror elements. As an example and 
considering only the vertical components of displacements and tractions, it is shown next how to obtain 
the flexibility matrices for the symmetric case. For the anti-symmetric case, the previous solution is 
multiplied by -1. The values ijf  represent the transfer functions between element i and element j. 
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Figure 2: Traction equivalencies for symmetric (left) and anti-symmetric (right) cases 

Using the symmetry (anti-symmetry) conditions, one can solve two problems with approximately half of 
the dimension of the original problem, saving time and memory. 

4 Numerical example 

In this section the presented methodology is applied to the study of the dynamic response of a slab resting 
on a homogeneous halfspace due to the passage of a moving load. The obtained results are compared with 
those computed by means of a 2.5D FEM/ITM methodology [5, 13]. 

The geometry and the properties of the slab as well as the properties of the homogeneous halfspace are 
shown in Figure 3. Different lengths of the model, L , were considered in the calculations. The results 
presented in this paper correspond to a length L  equal to 50 m.  
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Figure 3: Geometry and properties of the slab-soil system. 

A vertical load of magnitude F  equal to 1 kN moving over the length of the slab, L , at different speeds, 
v, is considered in this study. The presented results correspond to a circulating speed equal to 125 m/s, 
which is below the velocity of the surface waves of the soil. 

At a first stage the slab is discretized into two layers of 8 200×  identical 20-node solid elements with 
dimensions 0.25 0.25 0.15× ×  cubic meters. The chosen mesh leads to a 8 200×  regular discretization of the 
interaction surface. Based on (16), a time step, t∆ , equal to 310− s is adopted. Figure 4 shows the evolution 
of a point on the top surface of the slab (corresponding to a node of the FE mesh at the mean section of the 
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model) with the load position. This figure shows a comparison between the obtained results with those 
calculated using a 2.5D FEM/ITM model. A good agreement between the results of both models can be 
observed. A small disturbance in the curve obtained in the current work can be identified, which occurs 
when the load enters the model. In a similar representation, Figure 5 shows the evolution of the vertical 
displacement of two points located 2 m and 5 m off the border of the slab. Once again a good agreement 
between the results is observed. Nevertheless, the disturbance between the analysed point and the slab 
increases. This fact leads to the conclusion that the study of the response at larger distances from the slab 
requires a more extensive model. 
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Figure 4: Vertical displacement of a point of the slab: comparison between the obtained results and 

those computed using a 2.5D FEM/ITM model. 
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b) 

Figure 5: Vertical displacement of a point a) 2 m and b) 5 m off the border of the slab: comparison 
between the obtained results and those computed using a 2.5D FEM/ITM model. 

At a second stage, the influence of considering relaxed coupling is considered. In other words, the same 
problem is studied but only a vertical coupling is assumed. The discretization adopted for the slab (FE 
mesh) as well as for the interaction surface are equal to those used in the previous case. As a consequence, 
the same time step is considered. 

Finally, in order to show a more efficient way to study this problem a third case is presented. In this 
analysis the symmetry of the superstructure and the loading is considered and consequently only half of 
the structure is modelled. It is also considered that each finite element in the interface surface contacts 
with 4 interaction elements, which enables the use of the same time step and larger finite elements. Thus, 
the slab is discretized into two layers of 4 100×  identical 20-node solid elements with dimensions 
0.50 0.50 0.15× ×  cubic meters. According to the previous considerations, this mesh leads to a 8 200×  
regular discretization of the interaction surface. 

3448 PROCEEDINGS OF ISMA2010 INCLUDING USD2010



-10 -5 0 5 10
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2x 10
-7

Position [m]

V
er

tic
al

 d
is

pl
ac

em
en

t [
m

]

 

 

 complete coupling
 relaxed coupling
 symmetric model

 
 

a) 
 

-10 -5 0 5 10
-6

-5

-4

-3

-2

-1

0

1

2x 10
-7

Position [m]

V
er

tic
al

 d
is

pl
ac

em
en

t [
m

]

 

 

 complete coupling
 relaxed coupling
 symmetric model

 
 

b) 
 

-10 -5 0 5 10
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1x 10
-7

Position [m]

V
er

tic
al

 d
is

pl
ac

em
en

t [
m

]

 

 

 complete coupling
 relaxed coupling
 symmetric model

 
 

c) 

Figure 6: Vertical displacement of a) a point of the slab; b) a point 2 m off the border of the slab; 
c) a point 5 m off the border of the slab: comparison of the results obtained with three distinct 

approaches. 
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Figure 6 shows a comparison of the results obtained for the three cases. As expected, the results obtained 
in the first and third analyses are almost coincident. The symmetry assumption as well as the consideration 
of several interaction elements per finite element (and consequently larger finite elements) lead to a more 
efficient computation. The comparison between the results obtained considering full coupling and relaxed 
coupling shows a small difference in terms of the maximum value. As expected the greater value occurs 
for a relaxed coupling. It is also possible to observe that the referred difference is more evident in the 
points of the slab (FE mesh) and decreases when the distance between the analysed point and the slab 
increases. 

5 Conclusions and further developments 

This paper briefly presents the implementation and application of a numerical analysis methodology 
which can be used in the prediction of train induced vibrations. A numerical example, based on the study 
of the dynamic response of a slab subjected to the passage of a moving load, is presented. The comparison 
of the obtained results with those obtained by means of a different validated method reveals a good 
agreement. The consideration of some simplifications and/or assumptions leads to good results and makes 
the methodology more efficient from the computational point of view. Since this tool was developed in 
order to be used in the prediction of vehicle induced vibrations, some tests with increasing complexity are 
still needed until that goal is achieved. 
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