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Abstract

This paper describes the implementation and vadidatf a numerical methodology which can be used in
the prediction of vehicle induced vibrations. Thiegented methodology is formulated in the time doma
for the three-dimensional case. Although preseirtdtie context of vehicle induced vibrations it dam
adopted in the study of general problems of dynasuitstructure interaction in which the structlies

on the surface of the soil. The method is basethercoupling of the fundamental Green functiona to
finite element code (FEMIX). Some relevant aspettthe implementation are briefly discussed and a
numerical example based on the study of the dynaesponse of a slab resting on a homogeneous
halfspace and subjected to the passage of a mimadgs presented.

1 Introduction

A considerable effort has been undertaken in regeats to develop numerical methods for the stddy o
problems involving a dynamic soil-structure intéi@ac (SSI). The simulation of problems involvingit
induced vibrations requires an adequate considerafithe dynamic track-soil interaction. The exgan

of the high-speed railway lines contributed todlctual relevance of this issue.

Due to its versatility, the Finite Element MethdeéEM) is a very popular and attractive tool. However
this method presents some limitations when usetthénsimulation of this type of problems. Due to its
semi-infinite nature, the soil cannot be fully dietized and, consequently, some type of domain
truncation is required. These artificial boundateesd to spurious reflections, which affect the dabur

of the modelled part of the system. If the diseetlidomain is very large (in order to move thefiaidi
boundaries away from the region of the model witteriest), the problem becomes computationally
intractable. Problems related to spurious reflegtimay be minimized (but not fully eliminated) wusin
absorbing boundaries (viscous dampers connectedetdoundaries of the finite element model) [1],
Perfectly Matched Layers (PML) [2] or infinite elents [3].

As an alternative, some authors applied hybrid ogtlcombining the Finite Element Method (FEM) and
the Boundary Element Method (BEM) in order to tadvantage of the versatility of FEM and the
capability of the BEM to simulate infinite medid.[4

Other authors developed numerical models based 2B concept, e.g., 2.5D finite/infinite elements
(FEM/IEM) [5] and 2.5D FEM/BEM [6]. These procedsarare very efficient from the computational
point of view. The main drawback of these modebsisociated with the assumption of invariabilitytrod
geometry and properties of the structure alongdireetion. Moreover they are usually limited todar or
equivalent linear analyses.

The present paper describes the implementation appdication of a three-dimensional numerical
methodology formulated in the time domain and basedthe coupling of the fundamental Green
Functions (GF) to a FE code [7, 8]. These functim@oduce the behaviour of the soil while the FE
model enables the simulation a complex superstreiciihe advantages of this procedure are relatdkto
possibility of modelling structures with complexogeetries which are not invariant along any dirattio
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as well as the capability of performing nonlineaalgses. The main drawback of these models is their
high cost in terms of time and computational resesir

2 Brief description of the methodology

This paper presents the implementation and apjgicaff a numerical methodology which can be used in
the prediction of train induced vibrations. In spif being presented in the context of problemsliring
soil-track interaction, it can be adopted in thedgtof generic three-dimensional problems of dyrag|

for the case of superstructures lying on the sarfafcthe soil. The presented procedure is formdlate
the time domain and enables the consideration mwipbex geometries and nonlinearities in the simatati
of the behaviour of the superstructure.

The presented methodology is based on the divisfaime system into two independent substructures:
a) the superstructure and b) its supporting sailréerred to above, the superstructure is simiilasing

the FEM while the soil is modelled by means of thedamental Green functions of a halfspace or a
layered halfspace with linear elastic behaviourthiis work the soil surface is assumed to be pharck
horizontal. The soil-superstructure coupling isabkshed at the interaction surfaces by means of
equilibrium and compatibility equations.

2.1 Description of the superstructure

The superstructure includes all parts of the systdnich are located above the soil and whose bebavio
is simulated by means of the FEM. The dynamic egnaif the superstructure can be written as

MUi+Cu+Ku=P 1)

where M , C and K are the mass matrix, damping matrix and stiffmearix of the superstructure, is
the displacement vector an® is the vector of external forces. A dot over aialdle denotes
differentiation with respect to time.

2.2  Description of the soil

The soil behaviour is described by means of theldorental Green functions, which define the dynamic
response of the medium due to an unit load appieény point. The developed tool enables the
possibility of considering the soil as a homogesaalfspace with linear elastic behaviour.

In this procedure the continuous time historieshaf soil pressures are approximated by a sequédnce o
rectangular pulses whose value corresponds tovitrage of the initial and final values of the redpe
time step.

The soil-superstructure interaction surface isrdisred with interaction elements and a unifornmsptee
is assumed within each element. This division ined in accordance with the FE mesh in such a way
that each interaction element corresponds to adbadinite element contacting with soil.

The dynamic response of the surface of the soiltdygressure loads (applied in the surface assatiat
with the interaction elements) with rectangulareidependence must be calculated. This response is
calculated by subtracting the responses due tarapkbads with Heaviside time-dependence appiied
consecutive time steps.

The displacements at the surface of the soil diepoint load with Heaviside time-dependence agdpite
the surface of the soil can be calculated analjiga time-space domain for the case of a homogase
halfspace [9]. Nevertheless, these analytical swigtneglect the effect of damping and are limited
some values of the Poisson's ratio.
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When dealing with a layered halfspace, the respansemputed numerically using the Direct Stiffness
Method available in the Elastodynamics Toolbox -TERO, 11]. In this case the Green functions are
calculated in the frequency-wavenumber domain aedhen transformed to time-space domain.

As explained above, this method requires the caficu of the soil response due to a pressure ladd w
Heaviside time-dependence. When the soil responsealculated analytically, the solution due to a
pressure is obtained by spatially integrating thlation due to a point load. When the Green fumtiare
calculated in the frequency-wavenumber domain, dbsired response can be obtained using a more
efficient procedure that consists on the solutipriie wavenumber content of the loaded area arttidoy
frequency content of a Heaviside load before thesfiormation to the time-space domain.

In this manner, the matri®’ (H'<' = 0) is used to calculate the soil displacement vewtorobserved

at time stept’ = j At due to an interface pressuce applied at the timet=0 and kept constant
(Heaviside time dependence), being

w'=H'qg )
Considering the matri¥ * defined as
H k+1 _ H k-1
i : ) ®)

equation (2), which relates the soil displacemants specific time step with the time evolutiortlod soil
pressures, can be re-written as

w = Z(F gt )+ F (4)

=2

2.3  Soil-superstructure coupling

The soil-superstructure coupling is establishethatinteraction surfaces by enforcing the equilibriof
forces and making the displacements compatible.

It is imposed that the displacements at each idtierapoint (soil) are compatible with the displamnts
at the corresponding point of the FE model. Thati@h between the nodal displacements of the &rE,
and the displacements of the interaction pointpdgsiructure)y, can be written as

v=T, U (5)
where T, represents a transformation matrix whose termdtrésem the FE shape functions evaluated at
the interaction points. Thus, the displacementsraade compatible by imposing

w=v (6)

On the other hand, the equilibrium of forces atitiieraction surface is guaranteed by imposing tthat
action of the soil on the structure has the samgnihade as the action of the structure on the aad
opposite signal. Thus, it is necessary to calculaenodal interaction force§ , corresponding to the soil

pressuresq, by means of the following equation

Q:-qu (7

where T, represents a transformation matrix which resatsfthe integration of the FE shape functions
over the area of the interaction elements.
Adding the interaction force®) , to equation (1) one has
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MU +CU +KU=P-T,d 8)

Taking into account equation (4) and performing senmathematical work, equation (8) can be written as

MU +Cu +(K+K*)u =P+ Q"™ 9)
where
K<=T,(F°)"T, (10)
and
thst - Tq (Fo)‘l Z(F 1 qi—j+1) (11)

=2
The influence of the supporting soil on the behawriof the system is represented by means of the
dynamic stiffness matrix of the sa{* and the vector of the historical interaction far€@" . Since full
contact is assumed (equation (6)), the stiffnessixm& ** is calculated and added to the stiffness matrix
of the structure only once before the first timepstOn the other hand, as the ved@* changes with

time, it has to be calculated and added to theeysif equations before processing each time ste@. T
dynamic equation of the system, defined by (9), bansolved by a classical time step integration
procedure as the Newmark Method.

2.4  Symmetry of the stiffness matrix of the soil

According to [7], when all the interaction elemeats identical and the interaction stresses areass to
be uniform within each element, the matfiX is symmetric. However, these conditions do notrgoize
the symmetry of the stiffness matrix of the s#iP". Thus, it is possible to conclude th&t™ is
symmetric only wherF ° is symmetric and simultaneously the following citiod is ensured

T, =cT, (12)

wherec is a scalar. In this work, equation (12) is ondfidt when the elements involved in the interaction
are 8-node solid elements.

2.5 Damping

Damping cannot be neglected in the simulation efttehaviour of structures and soil. In the strcthe
damping is considered viscous (frequency depend@tdefined by means of a Rayleigh damping matrix
(which results from a linear combination of masd atiffness matrices). On the other hand, damping i
the soil is assumed as hysteretic (frequency inudgo®). The calculation of Green functions enabites
consideration of this damping model by means @ ftlowing complex parameters [10, 11]

(A+ 2u). = (2+ 2u)(1£D,i) (13)

pe =1 (1Dgi) (14)

wherel and p are the Lame constants aiy, and Dg represent the hysteretic material damping ratio
for the dilatational waves and the shear wavepgas/ely.
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2.6 Response of points lying on the surface of the soil

It is important to note that, knowing the time bist of the interaction stresses, the calculatiorthef
response on the surface soil is very simple. I, the displacement of a poigt lying on the surface of
the soil at the instartt = j A is given by

w. (&) = ZILF" q (15)

where F; is obtained as described previously.

3 Implementation aspects

3.1 Stability of the process

In the developed tool, the dynamic equation of sistem, defined by (9), is solved by means of the
Newmark Method. In dynamic problems formulated Ine tFE method, the Newmark Method is
unconditionally stable. However, in the presentopem, the coupling of the structure and the suppprt
soil changes this scenario. The stability of thapted methodologies (FEM-BEM/GF) has been studied
by some authors [7, 12]. In their works, the auhooncluded that the relation between the time
discretization and the spatial discretization iaflues the stability of the process. In particuBatge [7]
suggests a reference time sispequal to

at= 2
2C,

(16)

where d represents the maximum distance between pointsaoh interaction element (for square
elementsd is the diagonal) an@, represents the Rayleigh wave velocity of the bpHee.

In general, the process is stable when the refergalue for time step is used. However, for a tstep
smaller than the reference one the process dogsaldtaccurate results.

One feature that can help in the stability of thecpdure is the consideration of the damping ofstik In

the numerical example presented in the section thisfwork, the presence of damping in the soihsur
the process stable. The stability wouldn't be aokieeven if a time step ten times greater than the
reference one was used. In the proposed methodotbgydamping of the soil is considered in the
calculation of the Green’s functions. As referredabove, one uses hysteretic damping (i.e., damping
which is independent of frequency) by consideriomplex elastic parameters for the soil [10, 11].

In equation (16), it can be observed that the sndlle time stepAt is, the smaller the discretization
width d of the interface surface must be. For problem®linmg moving loads at large speeds, the
accurate reproduction of the variation of the manables (displacements and stresses) requiresat s
time stepAt and therefore a small value df. If the FE mesh is defined with each interactiement in
correspondence with one finite element, the totahimer of degrees of freedom (DOF) in equation (9)
becomes very large. This might cause the exhausfitime available memory of the computer or lead to
unacceptably long execution times. For this reasor,allows that each finite element contacts witre
than one interaction element, or in other words, ititeraction elements mesh and the FE mesh majht n
match at the interaction surface. With this procedthe time stegit and the widthd of the interface
elements can be reduced without increasing the euftDOFs of the FE mesh. However, the number of
DOFs associated to the soil and the computatidif@it eof computing the convolutions in equation 11
increase.
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3.2 Relaxed coupling

In some problems, the dominant degrees of freed@nthe vertical ones, i.e., the relevant loads and
displacements follow the vertical direction. Insthind of problems, sometimes it is reasonable ghaa
consider that the structure can slide horizontallyelation to the underlying ground. In such peshs,

the compatibility of displacements is enforced oimythe vertical direction and it is assumed thad t
structure only transmits vertical pressure to theugd (this case is usually referred as relaxegliag,
whereas when no simplification is done it is narhdldcoupling). Hence, the soil variables (tracsoand
displacements) are reduced to one third and stirtfgerequired to evaluate the convolution represeint
equation (11) is also reduced. For the problemgmies! in the section 4 of this work, the full canglor
relaxed coupling conditions are schematically repn¢ed in Figure 1.

l l

XXX XN

Figure 1: Full coupling vs. relaxed coupling
3.3 Symmetric structures

A wide range of structural problems involves stowes that have symmetric geometries. In these cases
the analysis of the problem can be performed byyaimmag two structures that consist in a half pdrthe
original structure. In one of the structures, tielhcements perpendicular to the plane of symnattiie
same plane are fixed and the acting load consisthe® symmetric part of the load. In the otherdtrte,

the displacements in the directions of the plansyoimetry are fixed at the same plane and theg@ctin
load consists on the anti-symmetric part of thalloEhese cases correspond to the symmetric and anti
symmetric cases, respectively. The total respohtigecstructure is obtained by combining the respoof

the analysis of each structure.

When the problem involves soil-structure interatticonsidering the adequate boundary conditionlsan
soil involves blocking some displacements inside gbil. In principle, the displacements must bedix
within all the depth of the soil (until infinity ithe case of a half space), and so, following &lpigroach,

the problem becomes more complicated than thenaligine. However, the initial problem can still be
simplified if one only imposes the proper boundeoyditions to the structure, while for the groumeo
imposes symmetry/anti-symmetry of the applied ioast The needed impositions are represented in
Figure 2 both for the symmetric and anti-symmetese.

Concerning the algorithm of the procedure, thisetgp analyses only requires that the flexibilitytriees

be condensed by adding (or subtracting) columnsespectivemirror elements. As an example and

considering only the vertical components of dispiaents and tractions, it is shown next how to obtai

the flexibility matrices for the symmetric case.rRbe anti-symmetric case, the previous solution is
multiplied by -1. The valued; represent the transfer functions between elemamd element

o

g,
W4 f41 f42 f43 f44 f45 f46 q f44 + f43 f45 + f42 f46 + f41 q4
WS = f51 f52 f53 f54 f55 f56 q3 = f54 + f53 f55 + f52 f56 + f51 q5
WG f61 f62 f63 f64 f65 f66 q: f64 + f63 f65 + f62 f66 + f61 q6

Oe
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J1x= -Oex U2 x= -Osx Ozx= -Oax O1x= Jsx O2x= Osx Oz x= Qax
Qiy=Osy G2y = Osy Ozy = Qay Qiy= -Oey Qoy= -Osy O3y = -Oay

J12= 062 O22= 052 Oz2= Qa2 O1z= U622 G2z= Osz Ozz= -Oaz
Figure 2: Traction equivalencies for symrnetric (lef) and anti-symmetric (right) cases

Using the symmetry (anti-symmetry) conditions, @a@ solve two problems with approximately half of
the dimension of the original problem, saving tiamel memory.

4  Numerical example

In this section the presented methodology is agpbethe study of the dynamic response of a slatng
on a homogeneous halfspace due to the passagemfiag load. The obtained results are compared with
those computed by means of a 2.5D FEM/ITM methagip[6, 13].

The geometry and the properties of the slab as agethe properties of the homogeneous halfspace are
shown in Figure 3. Different lengths of the model, were considered in the calculations. The results
presented in this paper correspond to a lengtqual to 50 m.

F(/V Slab
/ p = 2145 Kg/m
b
\ 20m(xL) / v=0.2
/
' / Homogeneous halfspace
\ Homogeneous halfspace / C. = 2500 m/s
\. Cs, Cp, p, Ds, Dp // s ~ .
/ C, =433.0m/s
\\ P p = 1800 Kg/ni
— D, =D, =0.02

Figure 3: Geometry and properties of the slab-sodystem.

A vertical load of magnitudé equal to 1 kN moving over the length of the slab,at different speeds,
v, is considered in this study. The presented resudtrespond to a circulating speed equal to 125 m/
which is below the velocity of the surface waveshef soil.

At a first stage the slab is discretized into twgdrs of 8x 200 identical 20-node solid elements with
dimensions0.25x 0.25 0.1! cubic meters. The chosen mesh leads 88 200 regular discretization of the
interaction surface. Based on (16), a time step.equal to10°s is adopted. Figure 4 shows the evolution
of a point on the top surface of the slab (corredpw to a node of the FE mesh at the mean sectitite
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model) with the load position. This figure showsanparison between the obtained results with those
calculated using a 2.5D FEM/ITM model. A good agneat between the results of both models can be
observed. A small disturbance in the curve obtaineithe current work can be identified, which occur
when the load enters the model. In a similar repriedion, Figure 5 shows the evolution of the veatti
displacement of two points located 2 m and 5 mttudf border of the slab. Once again a good agreement
between the results is observed. Neverthelessditerbance between the analysed point and the slab
increases. This fact leads to the conclusion tiastudy of the response at larger distances fhensitab
requires a more extensive model.

x10

b o bk ooy
:

-10r

Vertical displacement [m]

-12r

14t = 2.5D model i
) - — developed tool

R I I I I I

16 -10 -5 0 5 10

Position [m]

Figure 4: Vertical displacement of a point of the lab: comparison between the obtained results and
those computed using a 2.5D FEM/ITM model.

107 ‘

X lOV7 i

Vertical displacement [m]
Vertical displacement [m]

5L = 2.5D model || 5L = 2.5D model i
— developed tool — developed tool
. . . . | N . 1 . 1 |
-10 -5 0 5 10 -10 -5 0 5 10
Position [m] Position [m]

a) b)

Figure 5: Vertical displacement of a point a) 2 m ad b) 5 m off the border of the slab: comparison
between the obtained results and those computed ngia 2.5D FEM/ITM model.

&>

At a second stage, the influence of consideringxet coupling is considered. In other words, thaesa
problem is studied but only a vertical couplingassumed. The discretization adopted for the sl&b (F
mesh) as well as for the interaction surface atmkmp those used in the previous case. As a coesee,
the same time step is considered.

Finally, in order to show a more efficient way tmdy this problem a third case is presented. s thi
analysis the symmetry of the superstructure andahéing is considered and consequently only hialf o
the structure is modelled. It is also considereat #ach finite element in the interface surfacetacs
with 4 interaction elements, which enables theafd¢he same time step and larger finite elemerttsisT
the slab is discretized into two layers a&100 identical 20-node solid elements with dimensions
0.50x 0.50¢< 0.1! cubic meters. According to the previous considenat this mesh leads to &x 200
regular discretization of the interaction surface.
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Vertical displacement [m] Vertical displacement [m]

Vertical displacement [m]

x10"

-14r — complete coupling
— relaxed coupling

-16r * symmetric model | |
_ I I I I I
18 -10 -5 0 5 10
Position [m]
a)
2 X 10 :

— complete coupling
-5- — relaxed coupling |-
- symmetric model
_ L L L L L
6 -10 -5 0 5 10
Position [m]
b)
1X 10 :

-2
— complete coupling
-2.5r — relaxed coupling | |
* symmetric model
R L L L L L
3 -10 -5 0 5 10
Position [m]
c)

Figure 6: Vertical displacement of a) a point of tle slab; b) a point 2 m off the border of the slab;
c) a point 5 m off the border of the slab: comparign of the results obtained with three distinct

approaches.
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Figure 6 shows a comparison of the results obtdioethe three cases. As expected, the resultsnaota

in the first and third analyses are almost cointid&he symmetry assumption as well as the coresider

of several interaction elements per finite elen{antd consequently larger finite elements) lead hooae
efficient computation. The comparison between #sults obtained considering full coupling and retax
coupling shows a small difference in terms of treximum value. As expected the greater value occurs
for a relaxed coupling. It is also possible to alsethat the referred difference is more evidenthie
points of the slab (FE mesh) and decreases whedistence between the analysed point and the slab
increases.

5 Conclusions and further developments

This paper briefly presents the implementation apglication of a numerical analysis methodology
which can be used in the prediction of train indLgirations. A numerical example, based on thdystu
of the dynamic response of a slab subjected tpdlssage of a moving load, is presented. The cosgrari
of the obtained results with those obtained by meeaiha different validated method reveals a good
agreement. The consideration of some simplificatiamd/or assumptions leads to good results andsnake
the methodology more efficient from the computagiopoint of view. Since this tool was developed in
order to be used in the prediction of vehicle iretigibrations, some tests with increasing compjexit

still needed until that goal is achieved.
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