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Abstract. A vehicle-structure interaction methodology with a nonlinear contact formulation
based on contact and target elements has been developed. To solve the dynamic equations of
motion, an incremental formulation has been used due to the nonlinear nature of the contact
mechanics, while a procedure based on the Lagrange multiplier method imposes the contact
constraint equations when contact occurs. The system of nonlinear equations is solved by an
efficient block factorization solver that reorders the system matrix and isolates the nonlinear
terms that belong to the contact el ements or to other nonlinear elements that may be incorpo-
rated in the model. Such procedure avoids multiple unnecessary factorizations of the linear
terms during each Newton iteration, making the formulation efficient and computationally
attractive. A numerical example has been carried out to validate the accuracy and efficiency
of the present methodology. The obtained results have shown a good agreement with the re-
sults obtained with the commercial finite element software ANSYS
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1 INTRODUCTION

The dynamic interaction between vehicles and sirechas attracted much attention dur-
ing the last three decades due to the increadeedbads and speed of the vehicles. Such fac-
tors strongly influence the interaction betweerhmtstems. In the particular case of railways,
the maintenance of the existing high-speed raMvagts and the construction of new lines
urge the development of new algorithms that camrately and efficiently analyze the inter-
action between both systems.

With the increase of the running speed, the prdityabif incidents such has track instabil-
ity or derailments also increases. Therefore, tneldpment of more complex train-bridge
interaction models that can accurately evaluatdrtie running safety is a major topic of re-
search.

A significant number of studies have been conduatetthe last decades to better under-
stand this phenomenon. In a problem of this tylpe,nhodel has to guarantee the coupling be-
tween the independent systems by establishing ythandic equilibrium through two sets of
equations of motion, one for the vehicle and onetlie structure. One way to solve these
equations is through an iterative procedure whitsuees the coupling between the two sys-
tems [1-3]. Such methods, despite being simplémfdement, may require a large computa-
tional effort and can lead to convergence problems.

Yang et al. [4] proposed another approach to stiieecoupled equations which consisted
on condensing the degrees of freedom (d.o.f.) ®thicle to those of the bridge elements in
contact. With such approach, the system matrixme-dependent and has to be factorized at
each time step.

Most finite element programs are able to handldamimproblems using either the penalty
method or the Lagrange Multiplier method [5]. Howewvthese methods are mostly used in
multibody dynamic simulations that do not take irocount the track flexibility [6-7].
Antolin et al. [8] proposed an hybrid finite elentv@multibody formulation that used the pen-
alty method to introduce geometrical constraintgha equilibrium equations. These con-
straints are formulated based on lookup tables ektdblish the geometrical compatibility
between the wheels and rails. Unlike other multibmmulations, this approach takes into
consideration the flexibility of the track and sttwre, but cannot deal with situations where
the wheel and rail lose contact.

Tanabe et al. [9] developed a train-structure adeon software, DIASTARS, in which the
train is modeled as a multibody system, while thdde is modeled with finite elements to
take the structure flexibility into account. Thigthodology divides the wheel-rail contact in
two modes, one vertical and one lateral, that enellated with nonlinear contact springs to
represent the wheel-rail contact stiffness. Henoespecific contact methods are used in this
approach.

Neves et al. [10] developed a simple methodologyetaon the Lagrange multipliers
method in which the dynamic equilibrium equatiofidoth systems are complemented with
additional displacement compatibility equationgnfng a single system of equations that
can be directly solved. However, this method dititake into account the nonlinearities pre-
sented in a wheel-rail contact problem such adtukes separation or deformations.

In the present paper, a contact search algoritheedan contact and target elements is
used to detect which elements are in contact. Woatact occurs, contact constraints equa-
tions are imposed using a procedure based on tip@ahge multipliers method, while the dy-
namic equations of motion are solved through aremental formulation due to the nonlinear
nature of the contact mechanics. These two type®wlinear equations form a single system
with displacements and contact forces as unknoilmnstder to solve the problem efficiently,
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a block factorization solver that reorders the eystmatrix is also presented. This solver
avoids multiple factorizations of the linear terchsring each Newton iteration, making the
formulation computationally attractive

The proposed methodology is referred to as thedinethod and has been implemented in
MATLAB [11] which import and manipulate the strucali matrices extracted from ANSYS
[12], a commercial finite element software usednimdel the vehicle and structure. A numeri-
cal example is presented to evaluate the efficiemog accuracy of the proposed vehi-
cle-structure interaction methodology.

2 GENERAL CONCEPT OF THE ALGORITHM

2.1 Contact algorithm concept

The vehicle-structure interaction problem can deexbby a direct method [10], based on
the Lagrange multiplier method, that avoids araitige procedure to ensure the coupling be-
tween the two systems. This method complementdyhamic equilibrium equations of both
systems with additional constraint equations, foigma single system of equations that can be
directly and efficiently solved. However, when tbentact nonlinearities are taken into ac-
count an iterative algorithm has to be added tddhmulation in order to solve the nonlinear
equations. The iterative schemes most widely usethé solution of nonlinear finite element
equations are based on the Newton method [13-14].

When studying the contact between two bodies, tinflace of one body is conventionally
taken as a contact surface and the surface ofttiee body as a target surface (see Figure 1).
This contact pair concept is widely used in compom@l contact mechanics. A
two-dimensional node-to-segment contact elemeunsésl in the present paper but the exten-
sion of the formulation to other types of finitemlents and to three-dimensional problems is
straightforward. The algorithm used does not actéamthe surface profiles of the contact
and target elements.

Target

igfil J_L [ ] J_L :\,i /" elements
i R—r 2 X X X - i R——r N A -

/
Contact /
elements

Figure 1: Contact pair concept.

In the present paper, a contact search algorithosesl to detect which elements are in
contact, being the contact constraints only impagkdn contact occurs. Since only the fric-
tionless contact is considered herein, the cortacstraint equations are purely geometrical
constraints that relate the displacements of tméacb node to the displacements of the corre-
sponding target element.

2.2 Classification of the degrees of freedom

Since the main nonlinearities of the system areeotmated on the d.o.f. of the contact el-
ements, the corresponding terms of these elemenkeisystem matrix can be reordered and
manipulated to avoid multiple factorizations of #@ire matrix in each Newton iteration (see
section 4). This procedure is also valid for othenlinear elements, such as nonlinear sus-
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pension in the vehicles or nonlinear bearings endinucture. Table 1 shows the d.o.f. classifi-
cation adopted in the present algorithm.

Unconstrained nodal d.o.f. (linear terms)

Reordered nodal d.o.f. (nonlinear terms)

Contact nodal d.o.f.

Free nodal d.o.f. (includdsR andY type d.o.f.)

Prescribed nodal d.o.f.

v <X~

Table 1: Classification of the d.o.f.

Thel type d.o.f. correspond to all unconstrained dwithout any nonlinear property, the
R type d.o.f. correspond to the nonlinear terms #énatreordered for efficiency (material non-
linearities),Y type d.o.f. correspond to the nonlinear terms ftbemcontact elements and the
P type d.o.f. are the prescribed d.o.f. Note thaspite bottR andY type d.o.f. correspond to
the same type of d.o.f. (nonlinear unconstrained.jl. the algorithm separate them, since the
dimension of theY type d.o.f. can vary due to the changes of théaobrstatus (th&' type
d.o.f. exists only if contact occurs). The aboventitmed d.o.f. classification is illustrated in
Figure 2.

B

| type d.o.f.
(vehicle)

o0

b) Detail A -Rtype d.o.f. in a nonlinear suspension

771 x> Eif
I N 2
[T e ]
\\A\\\\\\M\\\\\\F‘L‘j\\
| type d.o.f.
(structure)
a) Vehicle-structure interaction scheme c) Detail B -Y type d.o.f. in the contact element

Figure 2: Schematic representation of the d.cefgification
3 VEHICLE-STRUCTURE INTERACTION FORMULATION

3.1 Formulation of the nonlinear dynamic equations

In a nonlinear dynamic analysis, the nodal poimtds corresponding to the internal ele-
ment stresses may depend nonlinearly on the naaat gisplacements [13]. Based on the
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a method [15] and assuming that the applied loadsdaformation-independent, the equa-
tions of motion of the vehicle-structure system barexpressed as

M & +C|(L+0) & ~a&?] +{+a)R® ~a RP = (1+a)F* —o F? )

whereM is the mass matrixC is the viscous damping matrii, is nodal point forces corre-
sponding to the internal element streséess, the externally applied nodal loads vector and
are the nodal displacements. The superscripticates the current time stepHAt) and the
superscripp indicates the previous ong. (

To solve Eq. (1) let th€& type d.o.f. represent the free nodal d.o.f., whadaes are un-
known, and the® type d.o.f. represent the prescribed nodal d.wligse values are known.
Thus, the load vector can be expressed as

Fr =Pz +Di X®™ +Dg X )
F. =P, +Dg X +D5, X™ +S (3)

whereP corresponds to the externally applied nodal logldsse values are known aBdare
the support reactions. The matrié2selate the contact forces defined in the localrdmate
system of each contact pair to the nodal pointe®iia the global coordinate system. The su-
perscriptsCE andTE denote contact and target element respectively.

The equilibrium between the two bodies is guarahtady if the forces acting in the con-
tact interface respect the following equation

XF+X™=0 (4)

Thus, Substituting Eq. (4) into Egs. (2) and (2deto
F. =P. +D,, X (5)
Fo=P,+Dg X+S (6)

where

X=X )
Dex =Dix ~Di (8)
Doy =Dix ~Dpx ©)

Substituting Egs. (5) and (6) into Eq. (1) andigarting intoF andP type d.o.f. gives
= C = C P (o] P
e el [ A e e
M PF M pp ]| dp CPF CPP ap alg RP RE

sra)| SF PR X g FErPe XD
Ps+Dpy X°+S° PP + D, XP+SP

(10)

The first line of blocks in Eg. (10) represents fystem of nonlinear equations that has to
be solved in order to calculate the unknowns ofpifalem (displacements and contact forc-
es). Rearranging the first line of blocks leads to

M 88 +(1+a)Cp &8 +(1+a)RS —(1+a) Dy X°=F¢ (11)

where
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Fr=(1+a)P —aPP -M, & —(1+a)Cpp &5 12)
+alC. a2 +C 8]+ aRE —a Dy XP

The second line of blocks is used to calculateuggpart reactions after solving the system
of nonlinear equations given by Eq. (11).
3.2 Incremental formulation for the solution of the norinear dynamic equations

Since the coefficients of the vector of the intémlament stresses in Eq. (10) depend on
the current displacements, an iterative scheme tistdopted to obtain the solution of the
equilibrium equations at the current time step. ifb&tive schemes most widely used for the
solution of nonlinear finite element equations laased on the Newton method [13-14].

Alternatively, the nonlinear Eg. (11) can be wntia the form

wlar, x5%)=0 (13)
wherey is the vector of residual which have to be nulbider to satisfy the dynamic equi-
librium. For the squtio(aE,Xi), the residual vector is given by

‘l’(aE ' XD): Fr =M Fr Ar (aj: )_ (1+ a)CFF ap (a*F )_ (l+a)RF (a:: )+ (1+Oc) De X7 (14)

The nodal velocities and accelerations depend emddal displacements and thus are not
unknowns in the equation. In thkemethod, the velocity and displacement at the otiiene
step are approximated with

a“=aP +|(L-y) & +y &) At (15)
a®=af+aP At{e—ﬂj a°+p ac} At? (16)

where  andy are parameters that control the stability and @oguof the method. Solving
Eq. (16) ford® gives

a = 12a°— 12a”— Loage [ Ly (17)
POt A\ POt 25
Substituting Eq. (17) into Eq. (15) yields
=t a -t aral1-Llarent|1-L |&° (18)
POt POt p 25

Assuming thai®' and X®' have already been evaluated, the funcijortan be expanded

using a Taylor series [16] about the squt(aE,XD). Neglecting the second and higher order
terms leads to

\|l(a|D: ' XD): ‘Il(a('::,i 'xc,i )+60T‘|é(a('::,i ' xc,i )X (aE _a<'::,i )+ ;)‘(l’m (a('::,i , Xc,i )X (XD_ xc,i) (19)
F
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where the superscripdenotes variables that were evaluated inttih&ewton iteration. Sub-
stituting Egs. (13), (14), (17) and (18) into EXQ) and differentiating the functiog with
respect to the variables leads to

M. -1+ a)ﬁ Cer —(1+4a) %ZEF (a°F" )} (aE —aﬁ") (20)

+{1+a) Dy (X7-x5)

1
PAL?

0=y(a', X" {—

Eqg. (20) can be rearranged into the following inceatal form
Ki dag - (1+ 0‘) Dy, AX'™ = ‘l’(a-CF'i X C'i) (21)

whereK & is the current effective stiffness matrix defirisd

KEL :ﬁ M + CHOC)% Cee + (1"'0‘) %IZEF (acF'i) (22)

with
Na; =a; —ay (23)
INGE G, (24)

Since Eq. (19) represents only a Taylor series@apmation aboul(a*F : XD), the incremen-

tal nodal displacements and contact forces givekdp. (23) and (24) are used to obtain the
next approximations

a* =a + A (25)
Xc,i+1 — Xc,i +Axi+1 (26)
In matrix notation, Eqg. (21) may be expressed as
[ BFX]B;‘;} = ylas’, x*') @7)
in which
Dex =—(1+a) Dy, (28)

3.3 Formulation of the constraint equations

When contact occurs, a constraint equation as tdded to the system of nonlinear equa-
tions defined in Eq. (27) to avoid penetrationsweein the two bodies. Thus, the
non-penetration condition for the normal directisgiven by

vE —VE > —g+r (29)

where V" are the displacements in the node of the contantent,v'™ the displacements in
the auxiliary point of the target elementare eventual irregularities between the contadt an
target elements and an initial gap that separates the two elements.

The displacements of the contact nodes belonginiget@ontact elements are given by

VE = HE a2 HE o 0
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where the displacement transformation matriceselate the displacements of the contact
nodes, defined in the local coordinate systemhéoniodal displacements defined in the global
coordinate system. Also, by analogy, the displacgsef the auxiliary points of the target
elements are given by

VE = HE o HE o @

Substituting Eqgs. (30) and (31) into Eq. (29) aadrtg into account eventual irregularities
r between the contact and target elements yields

Hye alC:'iJr1 =—g+r—Hy a; (32)

where
Hye = HS(E _HI(IIE: (33)
HXP :H>C<E_HI<E’ (34)

Since only the active constraints are considerdgqn(32) the inequality (29) becomes an
equality. Substituting Eq. (25) into Eq. (32) ledols

Hye 88" =-g+r —H,p af —H ¢ & (35)
Multiplying Eq. (35) by—(1+a) gives

H,. A =g (36)

where
ﬁXF = _(1+ a) Hye (37)
@2—(1+a (_g+r_HXPa(I;_HXF a%i) (38)

3.4 Complete system of equations

The incremental formulation of the equilibrium egjoas of motion of the vehi-
cle-structure system presented in Section 3.2 lhegewith the contact constraint equations
presented in Section 3.3 form a complete systeagoétions whose unknowns are incremen-
tal nodal displacements and contact forces. Eq$.g2d (36) can be expressed in matrix form
leading to the following complete system of lineguations

Kol Dex |[0a]_[wla2, x') 39
Hx 0 ||AX™ 9
The symmetry of the coefficient matrix presentedm (39) was demonstrated using the
Betti’'s theorem but is not presented here due agesfimitations.
The efficiency of the algorithm used for solvingethystem of equations (39) is very im-
portant. Thus, an efficient and stable block fagtiron algorithm is shown in Section 4 that

takes into account the specific properties of daobk, namely, symmetry, positive definite-
ness (if exists) and bandwidth.
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4 BLOCK FACTORIZATION SOLVER ALGORTIGM

The time required to solve the system of nonliregprations (39) represents, in the majori-
ty of the problems, the largest percentage of ¢it@ solution time. In a dynamic nonlinear
analysis the effective stiffness matrix is time-elegeent, which implies its factorization in
each iteration. Generally, this is a major drawbsicke the factorization of large matrices is
time consuming. However, in the present problene, mlonlinear terms are substantially
smaller that the linear terms, since the mateoalinearities are concentrated only in the con-
tact elements (Hertz contact model [5] or creep e®fl7]) and on nonlinear elements of the
model, like vehicle suspensions or structure bearitdence, in order to take advantage of
this situation, the effective stiffness matrix givey Eq. (22) is reordered according to the
adopted d.o.f. classification presented in Secion

Ky Ky Ko Dw[aa] [wla,xe
e K% Ko D || 22l |_|wlag,xo
Ke K% Ky D || dat| | wlas,xo
Hx Hx Hx 0 ||AX™ [¢]

(40)

With this reordering, only the nonlinear terrsandY type d.o.f., have to be factorized in
each iteration, while the largest blogk, is factorized only once in the beginning of the dy

namic analysis.
The coefficient matrix presented in Eq. (40) cardmtorized as following

K|| Km Kw BIX L11 0 0 0 U11 U12 U13 U14
KRI ERR KRY ?RX - L21 I-22 0 0 % 0 U22 U23 U24 (41)
K, Ky Ky Dw| |Ly Ly Ly O 0 0 U, U,
Hx Hx Hx O L, Ly, L Ll | O 0 0 U,

whereL; andU; are lower and upper triangle submatrices, respegti The superscripts

presented in Eq. (40) are neglected for simpliftcain the present section.
The first step of the solver consists on factogzimock K, and on calculating the upper
triangle submatrixJ,, .

KII = I_11 L-El (42)

KIR = L11U12 (43)

Due to the positive-definiteness property of maiix, a Cholesky factorization [18] has

been used in the operation (42). Since the subreatk, andK , are time-independent,

Egs. (42) and (43) have to be solved only onceerbeginning of the analysis.
The second step consists on calculating the rengainpper triangle submatrices. In the

coefficient matrix presented in Eq. (40), the bleék,, andK, represent the effective stiff-

ness matrices with the nonlinear terms, while foeks H;; and Dj; depend on the train posi-

tion and on the contact status of each contact gdierefore, both types of blocks are
time-dependent and have to be factorized in eachtibn. However, the dimensions of the

previous mentioned blocks are small when compareie linear blockl , , making the next
operations less expensive in terms of computatiefiiait.
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Thus, the remaining upper triangle submatricegamen by

Ky=L,Ug, (44)
Dix =L,U,, (45)
K =L, U, +L,,U,, (46)
Ko =Ly U +L,,U,, (47)
Drx =L, U, +L,,U,, (48)

As mentioned before, the nonlinear contact elemmyaiise the connection between the two
systems, vehicle and structure. Depending of tiebdlpm, the stiffness matrix of these ele-
ments can assume other properties other than \posi@finiteness, thus it cannot be solved

with factorization methods without pivoting, likehGlesky orL DL [18]. Therefore, the

proposed block factorization algorithm evaluates plositive definiteness of the blok,,

and solves it with pivoting if needed, as explaibetbw.

The third part of the solver consists on solving tbllowing intermediate system of equa-

tions

L, O 0 0|l ‘l’(a| , X
L, Ly, O 01|y ‘l’(awx
L
L

v Ly Lu 0 llysl |wla,X (49)
a1 La L LallVY. g
in which the vectory, to y, are obtained by forward substitution
L.y, =v(a, X) (50)
LY, =w(ae X)=Lay, (51)
Ys =LYy (52)
Ya=LaYs*LaY, (53)
where
Ya=wlay, X)-Layi~Lay, (54)
Ys=0-LauYi~LiYs (55)
Finally, the solution of the system equations 1&giby
U, U, U, U,l||Aq A
0 U, U, 354 Aag _|Y2 (56)

0 0 Axm Asal|lba | |y,
0 0 Am Au|AX Y.,

where the first part of the solution of the systéka, and AX, is obtained by factorizing and

solving the two last lines of blocks with pivoting



P. A. Montenegro, S. G. M. Neves, A. F. M. Azevedhd R. Calgcada

BEIRIA
A Au|lBDX] |y,
in which
A=K, —L,L% -L,LY, (58)
Ass=Hxy L, LT, -L,L%, (59)
As=-L, LT -L,L", (60)

and the last part of the solutiofAa, and Aay, is obtained by back substitution
LY, e, =y, —L5,Aa, —L, AX (61)

LT11 Aa, =y, - LT21 Aag - I-T31 Aa, - I-T41 AX (62)

5 NUMERICAL VALIDATION

In order to validate the accuracy of the proposethodology a numeric examples is pre-
sented in this section. The example consists ofsiwmply supported spans subjected to four
moving sprung masses (see Figure 3). The spamaadeled with solid elements in order to
test not only the accuracy, but also the efficieatthe algorithm. The two simply supported
spans are discretized with sixteen thousand 8-soli@ elementsZx80x10x10) and have a
total of 58696 unconstrained d.o.f. The geometrgraed mechanical properties of the system
are the following: length of each sp&r=20m, width of the square cross sectlmr 2.45 m,

Young's modulusE =25GPa, Poisson's ratio = 0.2, moment of inertid =3m*, mass per
unit length m=30000kg/m , suspended mas#l, K =30000 kgnd spring stiffness
k, =156550kN /m. The distance between each sprung magssig0m.

The results obtained using the direct method angpemed with the results obtained by the
commercial software ANSYS [12], using the Lagrangétiplier method [5].

Figure 3: Two simply supported spans subjectedtio inoving sprung masses.

The sprung masses move at a constant speedl5 m/s. The following parameters for
the o« method are considered:=0, =025 and y = 05, which correspond to the constant

average acceleration method. The time stefitis 0001s and the total number of time steps
is 900.
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The vertical displacement at the midpoint of thistfspan, obtained using the direct meth-
od and ANSYS, is plotted in Figure 4. The vertideplacements of the first and last sprung
masses, SM1 and SM4 respectively, are comparejing=5. The results obtained using the
proposed methodology and ANSYS show a very goodemgent.

4.0

—— Direct Method

N
o

Displacement (mm)
o
o

00 01 0.2 03 04 05 06 0.7 08 0.9
Time (s)

Figure 4: Vertical displacement at the midpointhaf first span.

8.0 : : : : :
— Direct Method — SM1
__ 6.0f - -ANSYS - SM1
e Direct Method - SM4
E 40 ANSYS - SM4
é 2.0
D)
S 0.0 A \/\/\ /\
L Y \/\/ VA v \/
2

| [
AN
o o

00 01 02 03 04 05 0.6 0.7 08 0.9
Time (s)

Figure 5: Vertical displacement of the first anstlsuspended masses.

Finally, the comparisons between the contact foofdle first and last sprung masses are
plotted in Figure 6. The results obtained usingdhrect method perfectly match the corre-
sponding ANSYS solutions obtained using the wetikn Lagrange multiplier method. As
was expected, the first sprung mass is in permasatact during all the analysis, since the
excitation of the beam is not enough to cause pineng mass separation. However, the last
sprung mass loses contact with the beam a signifitamber of times as can be observed in
Figure 6 when the contact force is zero. This is ttuthe fact that the excitation of the beam
is considerably higher during the passage of tlsé darung mass. Therefore, the present
methodology demonstrates good accuracy both whenehicle detaches from the structure
and when reattaches.
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Figure 6: Vertical contact force of the first aadtl suspended masses.

The calculations of the present example were pedrusing a workstation with an Intel
Xeon E5620 dual core processor running at 2.40 Gldez.a more accurate comparison the
calculations in ANSYS and MATLAB were performed nigia single thread. The execution
time was 16608 seconds using ANSYS and 264 seassidg the direct method with th@-o
timized block factorization algorithm, which is ali®3 times faster. Hence, in terms of com-
putational speed, the direct method has provem teeby efficient.

6 CONCLUSIONS

An accurate and efficient methodology for analyzimg vehicle-structure interaction prob-
lem has been developed. The nonlinear equatiomsotibn of the vehicle and structure are
complemented with additional constraint equatidosning a single system of equations that
can be directly and efficiently solved. Due to tienlinear nature of the contact mechanics,
an incremental formulation has been used to stleestjuations of motion, while a procedure
based on the Lagrange multiplier method imposesdnéact constraint equations when con-
tact occurs. The system of nonlinear equationsliged by block factorization solver that re-
orders the system matrix and isolates the nonlitexars, thus avoiding multiple unnecessary
factorizations of the linear terms during each Nmwteration.

The accuracy and efficiency of the proposed metlogyohas been confirmed with a nu-
merical example. The example consisted of two sisppported spans modeled with 8-node
solid elements subjected to four moving sprung egd®talizing 58684 unconstrained d.o.f.
The responses of the structure, vehicles as wdlhesontact forces obtained with the pro-
posed methodology have been compared with thetsesbitained with the commercial soft-
ware ANSYS using the Lagrange multiplier methodyodd agreement between the proposed
methodology and ANSYS has been observed. In tefreffioiency, the proposed methodol-
ogy has also showed very good results, sinceaib@at 63 times faster than ANSYS.
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