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Abstract. The boundary element method (BEM) is currently one of the most widely used nu-

merical methods to solve the wave equation. It is especially useful when the domain of interest 

is unbounded and the radiation of waves must be accounted for. On the other hand, the 

thin-layer method (TLM) is an effective tool for the calculation of the Green’s function in 

horizontally layered domains, which makes the TLM method an attractive option for use in 

the BEM. In this work, the two procedures are linked in the context of structures that are in-

variant in one direction.  



João M.O. Barbosa, Eduardo Kausel, Álvaro Azevedo, Rui Calçada 

 2 

1 INTRODUCTION 

There are situations in which a domain can be idealized as a longitudinally invariant me-

dium, i.e., a structure whose cross section remains constant along a given direction (in this 

work, the direction y ). For instance, in the case of vibrations induced by moving vehicles 

such as trucks or trains, it is often convenient to idealize the road or the track/tunnel as a 

structure whose geometry is invariant in the longitudinal direction. In these cases, after per-

forming a Fourier transform of the response fields (from the Cartesian coordinate y  to the 

horizontal wavenumber yk ), the analysis of the three dimensional structure can be reduced to 

a series of 2D problems. This type of analysis is referred to as a two-and-a-half dimension 

(2.5D) problem and is normally cast in the wavenumber-frequency domain ( ,yk  ). 

Additionally, whenever the domain under study is unbounded (e.g., soil-structure interac-

tion problem), the radiation of waves to infinity must be accounted for. The boundary element 

method (BEM) accounts intrinsically for this condition and therefore is one of the most com-

monly used tools for these situations. The BEM requires the availability of the so called 

Green’s functions (GF), which are typically those of a whole, uniform space (the Stokes-

Kelvin problem), and less often those of layered spaces. In the 2.5D domain, the whole-space 

GF are known in analytical form [1] while the layered spaces GF can only be obtained via 

numerical methods. The latter can be obtained either with methods based on transfer matrices 

[2,3], on stiffness matrices [4] or on the thin-layer method (TLM) [5]. 

Formulations for the 2.5D BEM based on whole-space GF have previously been presented 

by Sheng et al [6]. On the other hand, François et al. [7] made use of the GF for layered 

spaces obtained via the stiffness matrix method. In this work, an alternative formulation of the 

2.5D BEM is presented, which is based on GF obtained via the TLM. In comparison with the 

previous two references, the formulation described in this work has the advantage of not need-

ing any special procedure to deal with the singularities of the GF, since these singularities are 

dealt with intrinsically in the TLM. Furthermore, the proposed procedure is easier to use since 

it only relies on the discretization of the layered domain into thin-layers. 

This work is organized as follows: in section 2, the TLM is described and it is explained 

how to obtain the field responses in the wavenumber domain; in section 3, the inverse Fourier 

transforms are evaluated analytically and it is indicated how to obtain the boundary element 

coefficients directly; section 4 concludes the work. 

2 THIN-LAYER METHOD 

The TLM is an efficient semi-analytical method for the calculation of the fundamental so-

lutions of layered media. It consists in expressing the displacement field in terms of a finite 

element expansion in the direction of layering together with analytical descriptions for the 

remaining directions. Though initially it was limited to domains of finite depth, paraxial 

boundaries were developed and coupled to the TLM in order to circumvent this limitation [8]. 

More recently, perfectly matched layers have been proposed and shown to be more efficient 

than the paraxial boundaries in the simulation of unbounded domains [9]. 

In this section, it is explained how to combine the eigenvalues and eigenvectors of the 

TLM matrices in order to obtain the GFs of a horizontally layered domain. Due to space limi-

tations, only the final expressions are presented. Further information on this method can be 

found in references [5,10]. 
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2.1 Thin-layer matrices 

Following the reference [10], after the layered domain under study is discretized into 

thin-layers and after application of the principle of weighted residuals, one obtains a system of 

equations for each thin-layer of the form 

    2 2 2ix xx x y xy y yy x x y yk k k k k k        
 

P A A A B B G M U  (1) 

where vector P  contains the external tractions  , ,x yp k k   at the nodal interfaces, vector U  

contains the displacements  , ,x yu k k   at the nodal interfaces ( , ,x y z  ) and the remaining 

bold variables are matrices that solely depend on the material properties of the thin-layers. 

These matrices are listed in works [5,10] for the case of cross-anisotropic materials. The vari-

ables xk  and yk  represent the horizontal wavenumbers in the transverse and longitudinal di-

rections, respectively, and   represents the angular frequency. 

By means of a similarity transformation, the system of equations (1) can be changed into 

  2 2 2

x xx x y xy y yy x x y yk k k k k k        
 

p A A A B B G M u  (2) 

where p  and u  are obtained from P  and U  by multiplying every third row by i  and where 

xB  and 
yB  are obtained from xB  and yB  by simply reversing the sign of every third column. 

Eq. (2) is advantageous over Eq. (1) because the matrices therein are symmetric while in Eq. 

(1) matrices xB  and yB  are not. 

After assembling the thin-layer matrices for all the thin-layers, one obtains one global sys-

tem of equations with the same configuration as Eq. (2), and although it can be easily solved 

for u , by doing so the TLM will offer no advantage over other methods. Instead, a modal ba-

sis is found and with that basis the displacements u  are calculated by modal superposition. 

The advantage of this procedure is that it allows to calculate analytically the inverse transfor-

mation from the domain  , ,x yk k   to the domain  , ,yx k  . 

2.2 Eigenvalue problem 

As described in references [5,10], a modal basis can be found through the solution of the 

quadratic eigenvalue problem in k  of the form 

  2 2

xx xk k     
 

A B G M 0  (3) 

If the matrices in the eigenvalue problem (3) are rearranged by degrees of freedom (first x , 

then y  and finally z ), one observes that the matrices attain the following structures 

 , , ,

x xz x x

xx y x y y

T

z xz z z

       
       

   
       
              

A O O O O B G O O M O O

A O A O B O O O G O G O M O M O

O O A B O O O O G O O M

  

Subsequently, the eigenvalue problem (3) can be decoupled into the two eigenvalue prob-

lems 
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 

2

2

xzx x x

T

xzz z z

y y y

k k

k

          
           

          

 

O BA O C O 0

B OO A O C 0

A C 0

 (4) 

which correspond to the generalized Rayleigh and generalized Love eigenvalue problems. 

The first eigenvalue problem has 2NR  solutions while the second has 2NL  solutions. For the 

calculation of the responses, only the eigenpairs whose eigenvalue has negative imaginary 

component are considered. This way, only NR  solutions of the Rayleigh problem and only 

NL  solutions of the Love problem are needed. 

2.3 Modal superposition – response in the  ,x yk k  domain 

a) Displacements 

Based on the eigenpairs, the displacements mnu  at the thm  nodal interface in direction   

due to a unit load applied at the thn  nodal interface in direction   are calculated by modal 

superposition as listed in Table 1, being the coefficients njK  given in Table 2. 

modes modes

3 4

modes modes

4 3

modes modes

2 2

mod modes

5 5i i

R L
mn m n m n

xx j xj xj j yj yj

j j

R L
mn m n m n

yy j xj xj j yj yj

j j

R L
mn m n m n mn

xy j xj xj j yj yj yx

j j

R R
mn m n mn m n

xz j xj zj zx j zj xj

j j

u K K

u K K

u K K u

u K u K

   

   

   

   

 

 

 

 

 

 

  

  

 

 

 

 

modes modes

6 6

1

modes

1

i i

nm

xz

R R
mn m n mn m n nm

yz j xj zj zy j zj xj yz

j j

R
mn m n

zz j zj zj

j

u

u K u K u

u K

   

 

 





 

    



 



 

Table 1: Nodal displacements in frequency-wavenumber domain. 

 

   

   

1 22 2 2 2 2

22

3 42 2 2 2 2 2

5 62 2 2 2

1
,

,

,

x y

j j

j j

yx
j j

j j

yx
j j

j j j j

k k
K K

k k k k k

kk
K K

k k k k k k

kk
K K

k k k k k k

 
 

 
 

 
 

 

Table 2: Kernels njK   2 2 2

x yk k k  . 

The displacements inside a thin-layer are calculated by vertical interpolation of the nodal 

values, i.e., 
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    
1

1

nn

j j

j

u z N z u 





  (5) 

being nn  the expansion order of the thin-layer,  jN z  the shape function associated with the 

thj  nodal interface and 
ju  the nodal displacement of the thj  nodal interface. 

b) Consistent nodal tractions 

The consistent nodal tractions acting on one isolated thin-layer can be calculated using Eq. 

(2) after the nodal displacements of that thin-layer are known. For a load applied in the ge-

neric direction  , the vectors p  and u  assume the form 

 

1

1nn

 
 

  
 
 

p

p

p

  

1

1nn

 
 

  
 
 

u

u

u

 

being  
T

ik x k y k z kp p p   p  the modified nodal tractions and  
T

ik xbk y k z ku u u  u  

the modified nodal displacements (the word “modified” is used to refer to the multiplication 

by factor i ). Furthermore, for the cases in which there is no internal source in the interior of 

the considered thin-layer, the tractions 
kp  ( 2...k nn ) are null and only the tractions 

1p  

and 
1nnp 
 remain non-zero. These non-zero tractions correspond to the tractions that the rest 

of the domain transmits to the thin-layer through the upper and lower interfaces. By replacing 

in Eq. (2) the displacements by their modal expansion as given in Table 1, the consistent trac-

tions are obtained also in terms of a modal superposition. Hence, considering a force applied 

at the global interface n  in the direction x  , the nodal tractions at a thin-layer are obtained 

by 

  

2 2

1 12 2

1 1

1 1 1

x l x l

jR Rj jL LjNR NL
n n

xx xj yj

j jx m x m

jR Rj jL Lj

x l x

jR Rj jLNR
n n

y xy x xj yj

j x m x

jR Rj jL

k

 

 

 



         
        

          
                 

      
    

     
          

 



Φ Φ

p A

Φ Φ

Φ

A B

Φ

 

1

0 0

2 2

1 10 0

l

LjNL

j m

Lj

x l x l

jR Rj jL LjNR NL
n n

y yy y y xj yj

j jx m x m

jR Rj jL Lj

k k   



 

  
   

   
   

  

         
        

           
                 



 

Φ

Φ

Φ Φ

A B G M

Φ Φ

 (6) 

where  

 
   

   

3 4

2 2

5

T T

0 0 0 0

, 0 0 , , 0 0

0 0 0 0 0

, 0 , ...

p p

x j x j

xp p xp p

jR x y x j jL x y x j

p

x j

k k k k k k k

Rj xj xj zj Lj yj yj

k K k K

k k k K k k k K

k K

k l m    

   
   

       
   
   

  Φ Φ

 (7) 

Similar expressions can be obtained for loads in the y  and z  directions. 
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c) Derivatives and internal stresses 

In the  ,x yk k  domain, the horizontal derivatives of the displacements are obtained by sim-

ply multiplying the displacements by i xk  or i yk , depending on the direction of the deriva-

tive. As for the vertical derivatives, they can be obtained by combining the nodal 

displacements weighted by the derivatives of the associated shape functions. However, by do-

ing so, the derivatives at the top and bottom interfaces of the thin-layers are not consistent 

with the tractions as calculated in the previous section, and therefore their degree of accuracy 

is not as good. In the reference [11], an alternative procedure for the calculation of the deriva-

tives is proposed. The procedure is based on the definition of secondary interpolation func-

tions, which are consistent with the stresses at the top and bottom interfaces of the thin-layer. 

In this work, the same procedure is used to define the vertical derivatives at the internal nodal 

interfaces. 

Consider a thin-layer (of expansion nn ), from which one knows the displacements 
ju  at 

the 1nn  nodes, their horizontal derivatives (
,xju  and 

, yju ) and the consistent tractions 

(
jp ) at the top and bottom interfaces, caused by a load in the direction  . The tractions at 

the upper surface relate to the internal stresses though  
T

top top top

1 ixz yz zz     p  and the trac-

tions at the lower surface relate to the internal stresses through 
1nn p  

 
T

bottom bottom bottomixz yz zz      . In its turn, the internal stresses and the derivatives of the dis-

placements are related by 

 

 

 

   

 

 

   

, , , ,

, , , ,

, , , , , ,
2 2

xz x z z x x z xz z x

yz y z z y y z yz z y

zz x x y y z z z z zz x x y y

G u u u Gu G

G u u u Gu G

u u G u u u u G

     

     

       

 

 

     

    


 
     

 
           

 (8) 

where G  and   are the Lamé constants. For each combination of ,  , the displacements and 

horizontal derivatives at each of the 1nn  nodal interfaces are known and therefore Eq. (8) 

can be used to determine the vertical derivatives at the upper and lower interfaces. Thus, with 

the 3nn  known quantities, one can make use of Hermitian interpolation and find a polyno-

mial of degree 2nn  that approximates the vertical variation of the displacements, and with 

that polynomial, obtain the value of the vertical derivatives at the interior nodal interfaces. 

Knowing the vertical derivatives at all nodal interfaces and since the horizontal derivatives are 

also known, all the components of the internal stresses are ready to be found by employing 

the constitutive relations of the material. 

3 DIRECT CALCULATION OF THE BEM COEFFICIENTS VIA THE TLM 

In the context of the boundary element method and assuming constant expansion of the 

elements, coefficients of the form  

 

 

 *

, , , , , d

, , , , , d

y

y

H u x z x z k

Q p x z x z k

   

   









  

  




n

 (9) 
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must be calculated. In Eq. (9),   represents the boundary of a boundary element,  ,x y  x  

represents a collocation point,  ,x yx  represents an observation point inside   and *p
n  are 

the tractions at point x  of the boundary  . In the following two sub-sections, it is shown how 

to calculate the coefficients H  and Q  for horizontal and for vertical boundaries using the 

TLM. 

3.1 Horizontal boundaries 

In this case, z  and z  are constant and consequently the integrals in Eq. (9) can be reduced 

to integrals in the horizontal coordinate, i.e., 

 

 

 

2

2

2

2

d

d

l

mn

l

l

mn

z

l

H u x x x

Q x x x

  

   





 

  





 (10) 

being l  the width of the boundary element, m  the nodal depth of the boundary element, n  the 

nodal depth of the collocation point and mn

z   internal stresses in horizontal planes, which cor-

respond to the consistent nodal tractions as indicated in 2.3b. 

The integrals in (10) can be replaced by the more convenient integrals 

 

      
      

2 2

2 2

i i

i i

i
e e d

2

i
e e d

2

l l
x

l l
x

mn
x k xx

x

x

mn
x k xz x

x

x

u k
H k

k

k
Q k

k

 

 





 










  




  



  

 





 (11) 

which in turn can be evaluated analytically since the integrands are known in closed form ex-

pressions. This way, for the evaluation of (11), one simply needs to evaluate integrals of the 

form 

   i1
e d

2
xk xp p

ij x ij x xI k K k k








   (12) 

and then combine them properly according to Eq. (11) and sections 2.3a and 2.3b. For con-

stant horizontal boundaries, the needed integrals are 1

ijI  , 0

ijI  and 1

ijI . The integrals (12) are 

evaluated by means of contour integration, being the expressions for 1

ijI  summarized in Ap-

pendix I. Expressions for 1

ijI   and 0

ijI  can be found in [10].  

It is important to note that some of the integrals  p

ijI x  contain factors of  sign x . Hence, 

when x  results from some algebraic operation (e.g. 2x x l  ) and it is supposed to be zero, 

one needs to guarantee that x  is indeed zero and not some residual value, as this will result in 

a erroneous evaluation of the integrals  p

ijI x . 

As final comment concerning horizontal boundaries, the calculation of the coefficients 

H  involves only the components of the modal shapes at the elevation of the load and at the 

elevation of the receiver. In its turn, the calculation of the coefficients Q  involves the com-

ponents of the eigenmodes at all nodes of the thin-layer that contains the boundary element. 
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Because the boundary elements are placed at the interface between two consecutive 

thin-layers, one needs to decide which thin-layer to consider: the one below or the one above. 

Though there is no difference when the collocation point does not belong to the boundary 

element, when it does belong, the consideration of one or the other results in different values 

for Q . In this work, if the outwards normal faces up, one considers the thin-layer below the 

boundary, while if the outwards normal faces down, one considers the thin-layer above the 

boundary. By following this procedure, one is excluding the collocation points from the do-

main, and so the singularity of the GFs is intrinsically removed. 

3.2 Vertical boundaries 

Vertical boundaries are defined by a constant horizontal coordinate BEx . If one assumes 

that the collocation point is placed at the depth lz z   ( thl  interface of the TLM model) and 

that the boundary element is placed between depths mz  and nz  ( thm  and thn  interfaces of the 

TLM model), then the integrals (9) can be replaced by integrals of the form 

 

   

   

BE

BE

d

d

n
kl

k

k m

n
kl

x k

k m

H u x x N z z

Q x x N z z

  

   





 

  





 (13) 

in which the integrands    BE

kl

ku x x N z   and    BE

kl

x kx x N z     represent the vertically 

interpolated displacement and traction fields, with  kN z  being the shape function associated 

to the thk  interface. 

Because the values  BE

klu x x   and  BE

kl

x x x     are nodal values and therefore do not 

depend on the depth z , the expressions in Eq. (13) can be replaced by 

 

   

   

BE

BE

d

d

n
kl

k

k m

n
kl

x k

k m

H u x x N z z

Q x x N z z

  

   





 

  

 

 

 (14) 

The integrals of the form  dkN z z  are easy to evaluate since the functions  kN z  are 

polynomials. In their turn, the space domain fields  BE

klu x x   and  BE

kl

x x x     are calcu-

lated through the inverse Fourier transforms 

 

     

     

BE

BE

i

BE

i

BE

1
e d

2

1
e d

2

x xkl kl

x x

x xkl kl

x x x x

u x x u k k

x x k k





  

    



 



 




 



 

 





 (15) 

As for the case of horizontal boundary elements, the integrals in (20) can be evaluated ana-

lytically, and for that purpose one simply needs to combine the integrals 0

ijI , 1

ijI  and 2

ijI  ac-

cording to the expressions of section 2.3a, 2.3b and 2.3c. The integrals 1

ijI  and 2

ijI  are given in 

Appendix I while the integrals 0

ijI  can be found in [10]. 



João M.O. Barbosa, Eduardo Kausel, Álvaro Azevedo, Rui Calçada 

 9 

As a final note, since the displacements are interpolated in the vertical direction by means 

of polynomial functions, the singular behaviour of the GFs cannot be reproduced. Hence, 

when the collocation point is contained in the vertical boundary element, one must add 0.5 to 

the calculated value of Q . The value 0.5 results from the regularization process for smooth 

boundaries (a vertical boundary is a smooth boundary). 

4 CONCLUSIONS  

In this work, a 2.5D BEM procedure is developed based on the TLM Green’s functions. 

For horizontal boundary elements, the BEM coefficients are directly calculated by modal su-

perposition, rendering accurate results and accounting for the singularities of the GFs. For 

vertical boundary elements, the vertically interpolated GFs are integrated analytically but the 

GF singularities are not accounted for. To account for the singular behavior of the GF, one 

needs to add, a posteriori, 0.5 to the value of the calculated traction coefficients. 

When compared to BEM procedures based on the analytical whole-space GF, the proposed 

procedure presents the advantage of being capable of considering horizontally layered do-

mains with the same ease as homogeneous domains while avoiding the discretization of free 

surfaces and layer interfaces. When compared to BEM procedures based on GF obtained with 

transfer or stiffness matrices, the proposed method has the advantage of being capable of 

evaluating the inverse Fourier transform in closed form expressions, which yield more accu-

rate results. Also, it becomes easier to use because the user only needs to discretize the lay-

ered domain in the vertical direction, a task that is far simpler than to define a proper 

wavenumber interval and to evaluate inverse Fourier transforms from xk  to x . 

The proposed methodology considers only horizontal and vertical boundary elements. 

When the actual boundary presents inclined surfaces, such geometry can be achieved by fill-

ing the irregular volume with finite elements. 

Due to the page limit of the document, it was not possible to include an example, but the 

procedure has been validated by comparison of results from different approaches. Also, ex-

pressions for linear and quadratic boundary elements have been obtained, but these are not 

shown here. 

As a final remark, the TLM model must be compatible with the BEM mesh in such a way 

that: 

1. The horizontal boundaries are placed at the interface between two different 

thin-layers and never inside a thin-layer; 

2. The extremes of vertical boundaries correspond to interfaces separating thin-layers 

and never to the intermediate elevations within the thin-layers; 

3. The nodes of vertical boundary elements must be located at the interface of 

thin-layers and never inside thin-layers; 

4. It is not recommended that the horizontal boundary elements be smaller than the 

thickness of the thin-layers. Likewise, it is not recommended that the distance be-

tween vertical boundary elements at the same level be smaller than the thickness of 

the thin-layers. 
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APPENDIX I – LIST OF INTEGRALS 

1

ijI  ( 2 2Im 0j yk k  ) 

 

   

 

 

2 2

2 2

2

2 2

2

2 2

2

2 2 2 2

2 2

isgn1

1 2i

i1 2 2

2 2i

isgn1 2 2 2

3 2i

isgn1 2 2

4 2i

i1

5 2i

sgn i1

6 2i

e

{ e +i e }

{ e + e }

{ e e }

e

e

j y

y j y y

j

j y y

j

j y y

j

j y j y

j

y j y

j

x k kx

j

k x k k k x

j j y yk

x k k k xx

j j y yk

x k k k xx

j y yk

k k x k k

j k

x k x k k

j k

I

I k k k

I k k k

I k k

I

I

 

  

  

  

  

 



 

 

 





 

2

ijI  ( 2 2Im 0j yk k  ,  
3
22 2Im 0j yk k  ) 

   

 

  

2 2 2 2

2 2

2

2 2

2

2 2

2

2 2 2 2

2

i2

1 2i

sgn i2 2 2 2

2 2i

3 2 3i2 2 21
3 2i

3i2 2 2 21
4 2i

sgn i2

5 2i

2

6

e

{ e e }

{ e i e }

{ e i e }

e

j y j y

y j y y

j

j y y

j

j y y

j

j y j y

j

y j

k k x k k

j

x k x k k k x

j j y yk

x k k k x

j j y yk

x k k k x

j y j y yk

x k k x k k

j k

k k k

j

I

I k k k

I k k k

I k k k k

I

I

  

  

  

  

  





  

  

  




2 2 2i

2i
e

y j y

j

x k k

k

 
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