SECOND-ORDER OPTIMIZATION OF FRAMES WITH NONLINEAR BEHAVIOR

Alvaro F. M. Azevedo

Email: alvaro@fe.up.pt

Faculty of Engineering
University of Porto
Portugal
PROBLEM

• Minimize the cost of a portal frame

FRAME BEHAVIOR

• Liner elastic between plastic hinges

• Plastic hinges with limited plastic rotation

• Plastic hinges are automatically located in the most critical positions
OPTIMIZATION APPROACH

- Solve of a nonlinear program
- Second-order approximation
- Integrated formulation
- No sensitivity analysis
- All the problem variables are present in the nonlinear program
OPTIMIZATION SOFTWARE

- NEWTOP
- General purpose code
- Lagrange-Newton method
- Symbolic manipulation of all the functions
NONLINEAR PROGRAMMING

Minimize $f(x)$

subject to

$g(x) \leq 0 \quad \rightarrow \quad g_i(x) + s_i^2 = 0$

$h(x) = 0$

- Variables / functions \quad \rightarrow \quad \text{real and continuous}
- All the functions are generalized polynomials, such as:

$f(x) = 5.9x_1^2x_4^{-3} - 3.1x_2 + 2.7x_1^{-1}x_3x_5^2 - 1.8$
A symbolic manipulation is performed

Expression parsing and evaluation is simplified

Exact first and second derivatives can be easily calculated

All these operations can be efficiently performed
INPUT FILE

Main title of the nonlinear program
Symmetric truss with two load cases (kN,cm)

Min.
\[+565.685 \times t5^2 + 100 \times t8^2 \; ; \# \text{truss volume (cm3)} \]

s.t.i.c.
Min. area 4: \[- t4^2 + 0.15 < 0 \; ; \]

s.t.e.c.
Equil 16: \[+ 141.421 \times t5^2 \times \text{disp16} - 100 = 0 \; ; \]

END_OF_FILE

• All the software is coded in ANSI C
LAGRANGIAN

\[L(X) = f(x) + \sum_{k=1}^{m} \lambda_{k}^{g} \left[g_{k}(x) + s_{k}^{2} \right] + \sum_{k=1}^{p} \lambda_{k}^{h} h_{k}(x) \]

VARIABLES

\[X = (s, \lambda_{s}, x, \lambda_{h}) \]

SOLUTION

• Stationary point of the Lagrangian
SYSTEM OF NONLINEAR EQUATIONS

\[
\begin{aligned}
\nabla L(X) = 0 \quad \Rightarrow \\
2s_i \lambda_i^g &= 0 \\
g_i + s_i^2 &= 0 \\
\frac{\partial f}{\partial x_i} + \sum_{k=1}^{m} \lambda_k^g \frac{\partial g_k}{\partial x_i} + \sum_{k=1}^{p} \lambda_k^h \frac{\partial h_k}{\partial x_i} &= 0 \\
h_i &= 0
\end{aligned}
\]

• The solution of the system is a KKT solution when

\[\lambda_i^g \geq 0\]
LAGRANGE-NEWTON METHOD

• The system of nonlinear equations

$$\nabla L(X) = 0$$

is solved by the Newton method

• In each iteration the following system of linear equations has to be solved

$$H(X^{q-1}) \Delta X^q + \nabla L(X^{q-1}) = 0$$
HESSIAN MATRIX

\[
H =
\begin{array}{cccc}
\text{Diag}(2\lambda^g_i) & \text{Diag}(2s_i) & 0 & 0 \\
0 & \frac{\partial g_i}{\partial x_j} & 0 & \\
0 & 0 & \frac{\partial h_j}{\partial x_i} & 0 \\
\text{SYMMETRIC} & & & 0 \\
\end{array}
\]

\[
\frac{\partial^2 f}{\partial x_i \partial x_j} + \sum_{k=1}^m \lambda^g_k \frac{\partial^2 g_k}{\partial x_i \partial x_j} + \sum_{k=1}^p \lambda^h_k \frac{\partial^2 h_k}{\partial x_i \partial x_j}
\]
Hessian Matrix Sparsity Pattern

\[H = \sim \]
SYSTEM OF LINEAR EQUATIONS

- Gaussian elimination
 - adapted to the sparsity pattern of the Hessian matrix

- Conjugate gradients
 - diagonal preconditioning
 - adapted to an indefinite Hessian matrix

LINE SEARCH

\[
X^q = X^{q-1} + \alpha \Delta X^q
\]
NEWTOP COMPUTER CODE

- All the variables are scaled
- Constraints are normalized
- Elementary equality constraints are substituted:
 \[x_i = c x_j \quad \text{or} \quad x_i = c \]
- The NLP is simplified
- Large scale problems can be solved
PORTAL FRAME

- Cost minimization
- Independent design variables \(\Rightarrow\) cross section parameters
NONLINEAR MATERIAL BEHAVIOR

• Linear-perfectly plastic behavior

• Linear-constant moment-curvature diagram

\[M_p = \sigma_{\text{max}} BH^2 / 4 \]

\[M_p = \sigma_{\text{max}} w (3B^2 - 6Bw + 4w^2) / 2 \]
NONLINEAR MATERIAL BEHAVIOR

- Plastic deformations concentrated in plastic hinges
- Plastic hinge rotation may be limited
- Collapse mechanism may not be reached
- Linear behavior between plastic hinges
STRUCTURAL DISCRETIZATION

\[K_a \, \Delta A = F_a + P_a \]

\[K_b \, \Delta B = F_b + P_b \]

- Hinge C \(\Rightarrow \) point of max. bending moment
EQUILIBRIUM EQUATIONS

\[\sum_{a} F_a + \sum_{b} F_b' + \sum_{b} F_b'' + \cdots = Q + R \]

- Reactions are only present in constrained dof’s
NON LINEAR PROGRAM

- Objective function: \(f(x) = \sum_{i=1}^{NB} c_i A_i L_i \)

- Equality constraints:
 - beam behavior \(K_a d_a = F_a + P_a \)
 - equilibrium \(F_a ' + \cdots + F_b ' ' + \cdots = Q + R \)
 - compatibility \(d_{a1} = D_{N1} \)
 - cross section properties \(A, I, M_p = \cdots \)
 - beam length \(L = a + b \)
• Equality constraints (cont.):

- plastic hinge rotation \(\theta_A = d_{a3} - D_{N3} \)

- elastic-plastic complementary in each plastic hinge:
 \[
 \theta_A = 0 \quad \text{or} \quad F_{a3} = M_p \quad \text{or} \quad F_{a3} = -M_p \quad \Rightarrow \quad \theta_A \left(M_p^2 - F_{a3}^2 \right) = 0
 \]

- nodal displacement \(D_j = \overline{D} \) (only at prescribed dof’s)

- reaction \(R_k = 0 \) (only at non prescribed dof’s)

- null shear force in C \(F_{a5} = 0 \) (locates C in the point of max. bending moment)
• Inequality constraints:

 ◆ side constraints \(x_{\text{min}} \leq x_i \leq x_{\text{max}} \)

 ◆ moments are limited by \(\pm M_p \) \(-M_p \leq F_{a3} \leq M_p \)

 ◆ limited plastic hinge rotation \(-\theta_{\text{min}} \leq \theta_c \leq \theta_{\text{max}} \)

 - limiting values depend on the type of material and on the shape of the cross section

 - crushing, brittle failure and local buckling can thus be avoided
NUMERICAL EXAMPLE

\[E = 200 \text{ GPa} \]
\[\sigma_{\text{max}} = 250 \text{ MPa} \]

\[-0.01 \leq \theta \leq 0.01 \text{ rad} \]

\[B_i \rightarrow \text{independent design variables} \]
NUMERICAL RESULTS

• Optimal solution - linear behavior
 ♦ Volume = 0.175 m³
 ♦ Horizontal displacement = 2.7 cm

• Optimal solution - nonlinear behavior
 ♦ Volume = 0.157 m³ (10 % smaller)
 ♦ Horizontal displacement = 5.8 cm (2 x)
CONCLUSIONS

- More realistic approach of the frame design problem
- Ultimate and serviceability conditions may be considered
- More economical structures can be designed
- Friendly user interface is still required
- Solving the nonlinear program is still a hard task