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OPTIMIZATION  ALGORITHMS

• Genetic algorithms

♦ Derivative free

♦ Robust in global optimization

♦ Can be easily parallelized

♦ Inneficient when the number of variables is high
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OPTIMIZATION  ALGORITHMS (cont.)

• First order methods

♦ Structural analysis / Sensitivity analysis / Redesign

♦ First order sensitivity analysis

♦ Adequate for a moderate number of design variables
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OPTIMIZATION  ALGORITHMS (cont.)

• Second order method presented here

♦ Integrated formulation

♦ First and second derivatives are symbolically determined

♦ Adequate for problems with a large number of design 

variables

♦ Penalized by the presence of a large number of behavior 

variables
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NONLINEAR  PROGRAMMING

• Variables / functions               real and continuous

• All the functions are generalized polynomials, such as:
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• A symbolic manipulation is performed

• Expression parsing and evaluation is simplified

• Exact first and second derivatives can be easily calculated

• All these operations can be efficiently performed

GENERALIZED  POLYNOMIALS
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### Main title of the nonlinear program
Symmetric truss with two load cases (kN,cm)

Min.
+565.685 * t5 ^ 2 + 100 * t8 ^2 ; # truss volume (cm3)

s.t.i.c.
Min. area 4:   - t4 ^ 2 + 0.15 < 0 ;

s.t.e.c.
Equil 16:  + 141.421 * t5 ^ 2 * disp16 - 100 = 0 ;

END_OF_FILE

INPUT  FILE

• All the software is coded in  ANSI  C
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LAGRANGIAN
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SOLUTION
• Stationary point of the Lagrangian
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SYSTEM  OF  NONLINEAR  EQUATIONS
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• The solution of the system is a KKT solution when

λ g

~
≥ 0
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LAGRANGE-NEWTON  METHOD

∇ =L X( )
~ ~

0

• The system of nonlinear equations

is solved by the Newton method

( ) ( )H X X L Xq q q

~ ~ ~ ~ ~

− −+ ∇ =1 1 0∆

• In each iteration the following system of linear equations has 
to be solved
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HESSIAN  MATRIX

( )Diag i
g2λ ( )Diag si2 0

~

∂
∂

g

x
i

jH
~

=

0
~

0
~

0
~

0
~S Y M M E T R I C

(m) (m)

(m)

(n) (p)

(n)

(p)

(m)

∂
∂ ∂

λ
∂

∂ ∂
λ

∂
∂ ∂

2 2

1

2

1

f

x x

g

x x

h

x xi j
k
g k

i jk

m

k
h k

i jk

p

+ +
= =
∑ ∑

∂
∂

h

x
j

i
•

•



19-22  July  1999 IRF              Porto - Portugal 12

HESSIAN  MATRIX  SPARSITY  PATTERN

H
~
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SYSTEM  OF  LINEAR  EQUATIONS

• Gaussian elimination

• Conjugate gradients

♦ adapted to the sparsity pattern of the Hessian matrix

♦ diagonal preconditioning

♦ adapted to an indefinite Hessian matrix
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LINE  SEARCH

X X Xq q q

~ ~ ~
= +−1 α ∆

• When the value of α minimizes the error in direction 

• When the value of α is made considerably smaller (e.g. α = 0.1)

♦ stable convergence
♦ more iterations - slower 

♦ the value of  α is often close to one
♦ faster convergence
♦ process may fail 

∆ X q

~



19-22  July  1999 IRF              Porto - Portugal 15

NEWTOP COMPUTER  CODE

• All the variables are scaled

• Constraints are normalized

• Elementary equality constraints are substituted: 

x c xi j= x ci =or

• The NLP is simplified

• Problems with a large number of variables can be solved 

(e.g., 4 000 design variables and 20 000 constraints) 
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• Sizing         cross-sectional areas may change

• Shape optimization        nodal coordinates may change

TRUSS  OPTIMIZATION

• Cost minimization (often similar to volume minimization)

Simultaneously
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VARIABLES

• Integrated formulation

• Design variables and behavior variables simultaneously 
present in the nonlinear program

Cross-section dimensions (e.g., width, diameter, area)

Some nodal coordinates

Nodal displacements

B

w = 0.63 cm
w

w

B



19-22  July  1999 IRF              Porto - Portugal 18

SUBSTITUTED  VARIABLES

• In most cases the area (A) and the moment of inertia (I) depend 

on a single parameter (B) 

A C C B C BA A A= + +0 1 2
2

I C C B C B C B C BI I I I I= + + + +0 1 2
2

3
3

4
4

Coefficients          and            are fixed

Variables A and I can be substituted in all the functions that define 

the mathematical program

Ci
A Cj

I

B

w = 0.63 cm
w

w

B
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Additional equality constraints           Li definition

Additional variables           Li
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EQUILIBRIUM  EQUATIONS
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• Reactions are only present in constrained dof ’s

• Equality constraints:
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COMPATIBILITY  EQUATIONS
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• Variables d are substituted

• DNi is fixed in constrained dof ’s
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NON  LINEAR  PROGRAM

• Objective function:   cost f x c A Li
i

NB

i i( )
~

=
=
∑

1

• Equality constraints:

♦ for each bar with variable length:

♦ for each non-prescribed degree of freedom:

one equation defining L 

one equilibrium equation 
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• Inequality constraints:

♦ minimum width B B≥ m in

♦ allowable stress (tension and compression) 

♦ local Euler buckling 

♦ side constraints in nodal coordinates x x xim in m ax≤ ≤
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LARGE SCALE  OPTIMIZATION  PROBLEM 

• 3D truss sizing

• Number of bars = 4 096

• Number of degrees of freedom = 3 135

• Number of decision variables = 7 231

• Number of inequality constraints = 19 038

• No variable linking

• No active set strategy
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BUILDING  ROOF - OPTIMAL  SOLUTION 

Undeformed mesh
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BUILDING  ROOF - OPTIMAL  SOLUTION 

Deformed mesh
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SHAPE  OPTIMIZATION  TEST  PROBLEM 
x2

x1

xx

100 cm

A (cross-sectional area)A

F = (f1,f2)

1 2

3

• Variables:  A , x

σ m ax = 1 0 0 2k N c m

r
F k N= 2 0 0

f f2 18=

• Svanberg’s solution confirmed



19-22  July  1999 IRF              Porto - Portugal 28

SHAPE  OPTIMIZATION  PROBLEM

• Minimize the cost of a steel bridge

• Member sizing and shape optimization

• Linear elastic structural behavior

• Local Euler buckling

• Fixed nodes (normal direction)

• Portuguese structural codes
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STEEL  BRIDGE

4.0 m

18.0 m

3.5 m

B

w = 0.63 cm
w

w

B

• Group I - horizontal bars

• Group II - diagonal bars

Vertical distributed load
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STEEL  BRIDGE
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Initial shape

Optimal shape

OPTIMAL  SHAPE
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NUMERICAL  RESULTS

• Optimal solution  - sizing only

♦ Volume  =  170  dm3

• Optimal solution  - sizing and shape optimization

♦ Volume  =  146  dm3 (14 % smaller)

♦ CPU time (PC):  less than 10 seconds
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4.00 m

40 kN = = = = = = =

8 x 2.00  =  16.00 m 

Available suports

PROBLEM: 
create a structure to hold 8 loads of 40 kN each

RSA / REAE - Fe 430
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4.00 m

40 kN = = = = = = =

8 x 2.00  =  16.00 m 

B

B w

w

Volume = 69 440 cm3

B = 12.0 cm (fixed)
B =   8.0 cm (fixed)
w =   0.2 cm (fixed)

INITIAL  SOLUTION
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Volume = 66 674 cm3 ( - 4 % ) 

OPTIMAL  SOLUTION

Initial solution
Optimal solution
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NEW  INITIAL  SOLUTION

• Same problem

• Distinct topology
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Volume = 58 934 cm3 ( - 15 % ) 

OPTIMAL  SOLUTION
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OPTIMAL  SOLUTION

Tension
Compression
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CONCLUSIONS

• Applicable to large scale optimization problems

• Very accurate and efficient 

• A large number of behavior variables and/or load cases 

reduces efficiency 

• Friendly user interface is still required

• Can be used in realistic truss optimization problems 


