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STRUCTURAL OPTIMIZATION

* What isthat?

+ Design of Civil Engineering structures:
»>Buildings
»>Bridges
sDams

+ Design of Mechanical Engineering devices:

s>Automobiles
>Air planes
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STRUCTURAL OPTIMIZATION
* Find the least cost solution the satisfies al the requirements

« Structure must be safe - unlikely collapse

« Structure must have quality — stiffness, comfort

+ These requirements must prevail for an extended
period of time - durability

+ Structural behavior is governed by the laws of nature —
equilibrium, compatibility, relationship between forces

and displacements
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OPTIMIZATION ALGORITHMS

* Genetic algorithms

+ Derivative free
+ Robust in global optimization
+ Can be easily parallelized

« Inefficient when the number of variablesis high

3-6 July 2001 Summer School Porto - Portugal




OPTIMIZATION ALGORITHMS

e First order methods

« Structural analysis/ Sensitivity analysis/ Redesign
« First order sengitivity analysis

+ Adequate for a moderate number of design variables
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OPTIMIZATION ALGORITHMS
» Second order method presented here

+ Integrated formulation (all the variables are present)

« First and second derivatives are symbolically determined
(@l the functions must be explicitly available)

+ Adequate for problems with alarge number of design
variables

+ Penalized by the presence of alarge number of behavior

variables
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NONLINEAR PROGRAMMING

Minimize f (x)

subject to
g(x)<0 - G(N+g=0
h(x) =0

* Variables/ functions I:> real and continuous

* All the functions are generalized polynomials, such as:

f(x)=2.1x2x;* - 3.1x, + 2.7x;'x,;x2 - 1.8
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GENERALIZED POLYNOMIALS

fOg=2 g%,  31x 2 x x: 18

* A symbolic manipulation is performed
* Expression parsing and evaluation is simplified
« Exact first and second derivatives can be easily calculated

* All these operations can be efficiently performed
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DERIVATIVE EXAMPLE

i o m2bdix;E =630 x,
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INPUT FILE

### Main title of the nonlinear program
Symmetric truss with two | oad cases (kN,cm

M n.

+565.685 * t5 " 2 + 100 * t8 2 ; # truss volune (cnB)
s.t.i.c.

M n. area 4: - t47~2+0.15<0;
s.t.e.c.

Equil 16: + 141.421 * t5 ~ 2 * displ6 - 100 = O ;
END_OF FI LE

* All the softwareiscoded in ANSI C
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DENOMINATOR SUBSTITUTION

-D+98y*-z=0
3

e ol -
98y ~7

x*D*-57D"-31<0

D=98y* -z (Disanew variable)
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LAGRANGIAN
()= (e onfs) v« 2 n

k=1

VARIABLES

X =(s.2%x.4")

SOLUTION
« Stationary point of the Lagrangian
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SYSTEM OF NONLINEAR EQUATIONS

2549 =0 (i=1..,m)
gi+§2:O (I:1 ..... m)
- = 9k nOh _ i =
— AS A = =1..,

a"xi+g1 “Ix +Z{ ox ° ( ")

h=0 (i:]. ..... p)

* The solution of the system is a KKT solution when

A9 =0
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LAGRANGE-NEWTON METHOD

* The system of nonlinear equations
AL(X)= 0

is solved by the Newton method

* In each iteration the following system of linear equations has
to be solved

H(x ) axe+oL(x ko
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HESSIAN MATRIX

(m) (m) (n) (P
(m) Diag(Z)I?) Diag(2s)) 0 0
o
Lo 0 o~ 0
= ]
- on,
(n) . ax
() SYMMETRIC/ 0
</
2%t & d%g & . d°h
g_~ Ik h_ Y "%
¢ %0 X, +k:1/]"dxia"'xj +§‘1A"0"'xidxj
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HESSIAN MATRIX SPARSITY PATTERN

(.
1

=
e - =
= ERE
L - - 2,
-'-.‘
=
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SYSTEM OF LINEAR EQUATIONS

» Gaussian elimination
« adapted to the sparsity pattern of the Hessian matrix

* Conjugate gradients
+ diagonal preconditioning

+ adapted to an indefinite Hessian matrix
HTHAX+HTOL=0

+ DRAWBACK: condition number increases significantly
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LINE SEARCH
)_(q = )_(q'1+aA)_<q

« When the value of o minimizesthe error in & X° direction
+ thevalue of a isoften closeto one
« faster convergence
+ process may fail

* When the value of a is made considerably smaller (e.g. a =0.1)

+ Stable convergence
» moreiterations - slower
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NEWTOP COMPUTER CODE

* Elementary equality constraints are substituted:

or

* All the variables are scaled

X =¢C

* Objective function and constraints are normalized
« TheNLPissimplified > easier to solve

* Problems with alarge number of variables can be solved

(e.g., 4 000 design variables and 20 000 constraints)
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SCALING

Initial solution:
/ (500,0.1,+/300,/0.1)

« Variable substitution: X, = Z, X;

* Functions f, g; and h; are multiplied by factors such that, for the

initial solution, al the gradient norms=1

Min. 2000 x,
subject to
- %, +200+x2=0 |:>
X,—0.2+x2=0
—-10x, x, +500=0
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Min. X
subject to
~0.640x: +0.256+0.384 x5 =0
0.447 %, ~0.894+0.447 x4 =0
-0.707 X2 +0.707=0

Porto - Portugal
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" T e oA
Linesearch o ||~ . 4. Objective
|\ " = function
- A ~EEA |-
Ay o ([
....... Yolle L
Scaled variables
. ‘ ’ ‘ \ i
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TRUSS OPTIMIZATION

 Cost minimization (often similar to volume minimization)

* Sizing => cross-sectiona areas may change

* Shape optimization => nodal coordinates may change

Simultaneously
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VARIABLES

* Integrated formulation

* Design variables and behavior variables simultaneously
present in the nonlinear program

+ Cross-section dimensions (e.g., width, diameter, area)

+ Some nodal coordinates

+ Nodal displacements v
- 1T .
B
+—t
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SUBSTITUTED VARIABLES

* In most cases the area (A) and the moment of inertia (1) depend

on asingle parameter (B) |
A=Cl+C/'B+C/B? I -
B

— I | | o2 I 3 | o4
|—C0+ClB+CzB +CsB +C4B
+ Coefficients C,A and le are fixed
o Variables A and | can be substituted in all the functions that define

the mathematical program
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ADDITIONAL VARIABLES

kij =...+EAL  +... x

L= \/(X21 - X11)2 +(X22 _X12)2

+ Additional variables => L,

-+ Xi21 +X122 +X221 +X222 —2X11 Xy —2Xp%y =0

+ Additional equality constraints => L; definition
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EQUILIBRIUM EQUATIONS

* Equality constraints: F, + 0+ Fy + OII=Q +R
Qnz
S~ Fez Rz Faz .
B (= A Fa
N QNl
RNl

* Reactions are only present in constrained dof ’s
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COMPATIBILITY EQUATIONS

N sz b daz
) \IH N2 Ié ; g
d
B dBl A AL
DNl
N
d, = Dy

« Variables d are substituted
* D, isfixed in constrained dof 's

1o

@
1

'O

Fes
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NON LINEAR PROGRAM
* Objective function: cost => f(x)=§¢.ALi

* Equality constraints:
+ for each bar with variable length:

> one equation defining L

+ for each non-prescribed degree of freedom:

> one equilibrium equation
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NON LINEAR PROGRAM
* Inequality constraints:
» minimumwidth => B 2 B,
+ dlowable stress (tension and compression)
+ local Euler buckling
+ side constraints in nodal coordinates => Xmin S % S Xiax

. side constraints in some displacements => Din <Dy, <D
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LARGE SCALE OPTIMIZATION PROBLEM

* 3D truss sizing

* Number of bars = 4 096

» Number of degrees of freedom = 3 135

» Number of decision variables = 7 231

» Number of inequality constraints = 19 038
* No variable linking

* No active set strategy
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BUILDING ROOF - OPTIMAL SOLUTION

Undeformed mesh
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BUILDING ROOF - OPTIMAL SOLUTION

VIV

e =

K ?jiM

\

s
N
.“\'/.v‘

Deformed mesh
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SHAPE OPTIMIZATION TEST PROBLEM

XZT -

|F || = 200kN
s
g 160 KN e

«Variables: A, X » Svanberg’ s solution confirmed
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SHAPE OPTIMIZATION PROBLEM

* Minimize the cost of a steel bridge

» Member sizing and shape optimization
* Linear elastic structural behavior

* Fixed nodes (normal direction)

* Local Euler buckling

* Portuguese structural codes

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAV.'AVAVAVAVAVAVAVAV.\VAVVAVAVAVAVAVAVAVAAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
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STEEL BRIDGE
Vertical distributed load

J/S.S m jK; \L .

18.0m

-

» Group | - horizontal bars

» Group Il - diagonal bars
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STEEL BRIDGE
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OPTIMAL SHAPE

Initial shape
Optimal shape

/«/ <|=§
s <
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NUMERICAL RESULTS

» Optimal solution - sizing only

+ Volume = 170 dm3

* Optimal solution - sizing and shape optimization
+Volume = 146 dm? (14 % smaller)
+ CPU time (PC): lessthan 10 seconds
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PROBLEM

L Create a structure to hold 8 loads of 40 kN each

§>. Available supports | | RSA / REAE - Fe 430 |

<«
«—e
<«
«—e

|

«—
e

40 kN = = = = = = =
P 8x2.00 = 16.00 m
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INITIAL SOLUTION 1
B S W
|VOIume:69 440 cm3 | <—B>

— B =12.0 cm (fixed)
— B = 8.0cm (fixed)
4.00m — w = 0.2 cm (fixed)

40 kN = = = = = = =

8x2.00 = 16.00 m

A
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OPTIMAL SOLUTION

|Vo|ume:66674cm3 (-4%) |

Lol Lol

— Initial solution
— Optimal solution
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NEW INITIAL SOLUTION

» Same problem
* Distinct topology
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OPTIMAL SOLUTION

[ Volume =58 934 cm? (-15%) |
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OPTIMAL SOLUTION

— Tension
— Compression
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CONCLUSIONS

 Applicable to large scale optimization problems
* Very accurate and efficient

* Can be used in redlistic truss optimization problems

€« 5 o

* A large number of behavior variables and/or load cases

reduces efficiency

§ - Friendly user interface s till required
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INTERNET URLS
* My home page:
+ http:/lwww.fe.up.pt/~alvaro
* My list of papers (in English):

+ http://civil.fe.up.pt/alvaro/public_eng.htm

* Selected papers about this subject:

« http://civil.fe.up.pt/alvaro/pdf/1995_OPTI_Paper_Sec_Order_Struct_Opt.pdf
« http://civil.fe.up.pt/alvaro/pdf/1997_OPTI_Paper_Opt_Frames_Nonlin.pdf

« http://civil.fe.up.pt/alvaro/pdf/1999_OPTI_Paper_Shap_Opt_Steel_Bridge.pdf
« http://civil.fe.up.pt/alvaro/pdf/2001_OPTI_Paper_OO_Sec_Order_Opt.pdf
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