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STRUCTURAL OPTIMIZATION

• What is that?

♦ Design of Civil Engineering structures:

!Buildings

!Bridges

!Dams

♦ Design of Mechanical Engineering devices:

!Automobiles

!Air planes
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STRUCTURAL OPTIMIZATION

• Find the least cost solution the satisfies all the requirements

♦ Structure must be safe - unlikely collapse

♦ Structure must have quality – stiffness, comfort

♦ These requirements must prevail for an extended

period of time - durability

♦ Structural behavior is governed by the laws of nature –

equilibrium, compatibility, relationship between forces

and displacements
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OPTIMIZATION ALGORITHMS

• Genetic algorithms

♦ Derivative free

♦ Robust in global optimization

♦ Can be easily parallelized

♦ Inefficient when the number of variables is high
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OPTIMIZATION ALGORITHMS

• First order methods

♦ Structural analysis / Sensitivity analysis / Redesign

♦ First order sensitivity analysis

♦ Adequate for a moderate number of design variables
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OPTIMIZATION ALGORITHMS

• Second order method presented here

♦ Integrated formulation (all the variables are present)

♦ First and second derivatives are symbolically determined

(all the functions must be explicitly available)

♦ Adequate for problems with a large number of design

variables

♦ Penalized by the presence of a large number of behavior

variables
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NONLINEAR PROGRAMMING

• Variables / functions real and continuous

• All the functions are generalized polynomials, such as:
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• A symbolic manipulation is performed

• Expression parsing and evaluation is simplified

• Exact first and second derivatives can be easily calculated

• All these operations can be efficiently performed

GENERALIZED POLYNOMIALS
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DERIVATIVE EXAMPLE
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INPUT FILE

• All the software is coded in ANSI C

### Main title of the nonlinear program
Symmetric truss with two load cases (kN,cm)

Min.
+565.685 * t5 ^ 2 + 100 * t8 ^2 ; # truss volume (cm3)

s.t.i.c.
Min. area 4: - t4 ^ 2 + 0.15 < 0 ;

s.t.e.c.
Equil 16: + 141.421 * t5 ^ 2 * disp16 - 100 = 0 ;

END_OF_FILE
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DENOMINATOR SUBSTITUTION

zyD −= 28.9 (D is a new variable)
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LAGRANGIAN
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SOLUTION
• Stationary point of the Lagrangian
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SYSTEM OF NONLINEAR EQUATIONS
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• The solution of the system is a KKT solution when

λ g

~
≥ 0
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LAGRANGE-NEWTON METHOD

∇ =L X( )
~ ~

0

• The system of nonlinear equations

is solved by the Newton method

( ) ( )H X X L Xq q q

~ ~ ~ ~ ~

− −+ ∇ =1 1 0∆

• In each iteration the following system of linear equations has
to be solved



8

3-6 July 2001 Summer School Porto - Portugal 15

HESSIAN MATRIX
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HESSIAN MATRIX SPARSITY PATTERN

H
~
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SYSTEM OF LINEAR EQUATIONS

• Gaussian elimination

• Conjugate gradients

♦ adapted to the sparsity pattern of the Hessian matrix

♦ diagonal preconditioning

♦ adapted to an indefinite Hessian matrix

~~~~~
0=∇+∆ LHXHH TT

♦ DRAWBACK: condition number increases significantly
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LINE SEARCH

X X Xq q q

~ ~ ~
= +−1 α ∆

• When the value of α minimizes the error in direction

• When the value of α is made considerably smaller (e.g. α = 0.1)

♦ stable convergence
♦ more iterations - slower

♦ the value of α is often close to one
♦ faster convergence
♦ process may fail

∆ X q

~
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NEWTOP COMPUTER CODE

x c xi j= x ci =or

• All the variables are scaled

• Objective function and constraints are normalized

• The NLP is simplified easier to solve

• Problems with a large number of variables can be solved

(e.g., 4 000 design variables and 20 000 constraints)

• Elementary equality constraints are substituted:
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SCALING
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• Variable substitution:

• Functions f, gi and hi are multiplied by factors such that, for the

initial solution, all the gradient norms = 1

iii xZx =

Initial solution:
( )1.0,300,1.0,500
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Line search α

Error

Objective
function

Scaled variables

x λhλgs
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• Sizing cross-sectional areas may change

• Shape optimization nodal coordinates may change

TRUSS OPTIMIZATION

• Cost minimization (often similar to volume minimization)

Simultaneously
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VARIABLES

• Integrated formulation

• Design variables and behavior variables simultaneously
present in the nonlinear program

" Cross-section dimensions (e.g., width, diameter, area)

" Some nodal coordinates

" Nodal displacements

B

w = 0.63 cm
w

w

B
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SUBSTITUTED VARIABLES

• In most cases the area (A) and the moment of inertia (I) depend

on a single parameter (B)

A C C B C BA A A= + +0 1 2
2

I C C B C B C B C BI I I I I= + + + +0 1 2
2

3
3

4
4

" Coefficients and are fixed

" Variables A and I can be substituted in all the functions that define

the mathematical program

Ci
A Cj

I

B

w = 0.63 cm
w

w

B
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" Additional equality constraints Li definition

" Additional variables Li
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EQUILIBRIUM EQUATIONS
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F F Q RA B~ ~ ~ ~
+ ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ = +

• Reactions are only present in constrained dof ’s

• Equality constraints:
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COMPATIBILITY EQUATIONS
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dB2
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=
• Variables d are substituted

• DNi is fixed in constrained dof ’s
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NON LINEAR PROGRAM

• Objective function: cost f x c A Li
i

NB

i i( )
~

=
=
∑

1

• Equality constraints:

♦ for each bar with variable length:

♦ for each non-prescribed degree of freedom:

! one equation defining L

! one equilibrium equation
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• Inequality constraints:

♦ minimum width B B≥ m in

♦ allowable stress (tension and compression)

♦ local Euler buckling

♦ side constraints in nodal coordinates x x xim in m ax≤ ≤

NON LINEAR PROGRAM

♦ side constraints in some displacements maxmin DDD
iN ≤≤
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LARGE SCALE OPTIMIZATION PROBLEM

• 3D truss sizing

• Number of bars = 4 096

• Number of degrees of freedom = 3 135

• Number of decision variables = 7 231

• Number of inequality constraints = 19 038

• No variable linking

• No active set strategy



16

3-6 July 2001 Summer School Porto - Portugal 31

BUILDING ROOF - OPTIMAL SOLUTION

Undeformed mesh
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BUILDING ROOF - OPTIMAL SOLUTION

Deformed mesh
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SHAPE OPTIMIZATION TEST PROBLEM
x2

x1

xx

100 cm

A (cross-sectional area)A

F = (f1,f2)

1 2

3

• Variables: A , x

σ m ax = 1 0 0 2k N c m

r
F k N= 2 0 0

f f2 18=

• Svanberg’s solution confirmed
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SHAPE OPTIMIZATION PROBLEM

• Minimize the cost of a steel bridge

• Member sizing and shape optimization

• Linear elastic structural behavior

• Local Euler buckling

• Fixed nodes (normal direction)

• Portuguese structural codes
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STEEL BRIDGE

4.0 m

18.0 m

3.5 m

B

w = 0.63 cm
w

w

B

• Group I - horizontal bars

• Group II - diagonal bars

Vertical distributed load
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STEEL BRIDGE
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Initial shape

Optimal shape

OPTIMAL SHAPE
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NUMERICAL RESULTS

• Optimal solution - sizing only

♦ Volume = 170 dm3

• Optimal solution - sizing and shape optimization

♦ Volume = 146 dm3 (14 % smaller)

♦ CPU time (PC): less than 10 seconds
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4.00 m

40 kN = = = = = = =

8 x 2.00 = 16.00 m

Available supports

PROBLEM
Create a structure to hold 8 loads of 40 kN each

RSA / REAE - Fe 430
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4.00 m

40 kN = = = = = = =

8 x 2.00 = 16.00 m

B

B w

w

Volume = 69 440 cm3

B = 12.0 cm (fixed)
B = 8.0 cm (fixed)
w = 0.2 cm (fixed)

INITIAL SOLUTION
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Volume = 66 674 cm3 ( - 4 % )

OPTIMAL SOLUTION

Initial solution
Optimal solution
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NEW INITIAL SOLUTION

• Same problem

• Distinct topology
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Volume = 58 934 cm3 ( - 15 % )

OPTIMAL SOLUTION
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OPTIMAL SOLUTION

Tension
Compression
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CONCLUSIONS

• Applicable to large scale optimization problems

• Very accurate and efficient

• A large number of behavior variables and/or load cases

reduces efficiency

• Friendly user interface is still required

• Can be used in realistic truss optimization problems
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INTERNET URLs

• My home page:

♦ http://www.fe.up.pt/~alvaro

• Selected papers about this subject:

♦ http://civil.fe.up.pt/alvaro/pdf/1995_OPTI_Paper_Sec_Order_Struct_Opt.pdf

♦ http://civil.fe.up.pt/alvaro/pdf/1997_OPTI_Paper_Opt_Frames_Nonlin.pdf

♦ http://civil.fe.up.pt/alvaro/pdf/1999_OPTI_Paper_Shap_Opt_Steel_Bridge.pdf

♦ http://civil.fe.up.pt/alvaro/pdf/2001_OPTI_Paper_OO_Sec_Order_Opt.pdf

• My list of papers (in English):

♦ http://civil.fe.up.pt/alvaro/public_eng.htm


