Implementação da técnica do arc-length e métodos relacionados no programa de elementos finitos FEMIX

Ventura Gouveia, Joaquim Barros, Álvaro Azevedo e José Sena Cruz

Relatório 06-DEC/E-20

Data: Novembro de 2006

N. de pág.: 50

Palavras-chave: arc-length, elementos finitos, análise não linear

Escola de Engenharia Departamento de Engenharia Civil

Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento de Engenharia Civil

Implementação da técnica do arc-length e métodos relacionados no programa de elementos finitos FEMIX

António Ventura Gouveia Escola Superior de Tecnologia do Instituto Politécnico de Viseu ventura@dcivil.estv.ipv.pt

> Joaquim António Oliveira de Barros Escola de Engenharia da Universidade do Minho barros@civil.uminho.pt

Álvaro Ferreira Marques Azevedo Faculdade de Engenharia da Universidade do Porto http://www.fe.up.pt/~alvaro

José Manuel de Sena Cruz Escola de Engenharia da Universidade do Minho http://www.civil.uminho.pt/jsenacruz

INDÍCE

ÍN	DICE	5
SI	MBOLOGIA	7
1	INTRODUÇÃO	11
2	TÉCNICA DO ARC-LENGTH	15
3	DESLOCAMENTO CONTROLADO NUM GRAU DE LIBERDADE	24
4	DESLOCAMENTO RELATIVO CONTROLADO POR DOIS GRAUS DE	
	LIBERDADE	26
5	OPÇÕES RELATIVAS AO RESTART	28
6	INTRODUÇÃO DAS TÉCNICAS NUMÉRICAS NO PROGRAMA FEMIX	28
7	EXEMPLOS	32
	7.1 Simulação numérica de uma viga sujeita a três pontos de carga	32
	7.1.1 Procedimento load control	33
	7.1.2 Procedimento displacement control por assentamentos de apoio	34
	7.1.3 Técnica do arc-length com variable arc-length	34
	7.1.4 Técnica do arc-length com constant arc-length	35
	7.1.5 Procedimento displacement control at a specific variable	36
	7.1.6 Procedimento relative displacement control between two specific	
	variables	37
	7.2 Simulação numérica de um ensaio de tracção directa	38
	7.2.1 Procedimento displacement control por assentamentos de apoio	40
	7.2.2 Procedimento relative displacement control between two specific	
	variables	41
8	CONCLUSÕES	41
RI	EFERÊNCIAS	43

ANEXO I: PROCEDIMENTO DESTINADO À DETERMINAÇÃO DE $\delta \lambda^q$	45
ANEXO II: RESOLUÇÃO DO SISTEMA DE EQUAÇÕES	48
ANEXO III: FICHEIRO DE DADOS – BLOCOS RELATIVOS AO ARC-LENGTH	49

SIMBOLOGIA

a_n^i	Deslocamento na combinação <i>n</i> e iteração <i>i</i>
<u>a</u>	Vector dos deslocamentos nodais da estrutura
\underline{a}_n	Vector dos deslocamentos na combinação n
\underline{a}_{n}^{q}	Vector dos deslocamentos na combinação n e iteração q
\underline{a}_{n}^{0}	Vector dos deslocamentos iniciais na combinação n
\underline{a}_{F}	Vector dos deslocamentos referente aos graus de liberdade livres
b	Factor de escala
E _c	Módulo de Young do betão
f_c	Resistência à compressão do betão
f_{ct}	Resistência à tracção do betão
F	Força
F_{n-1}	Força exterior na combinação anterior após convergência
$F_n^q\left(\lambda^q ight)$	Força exterior aplicada na combinação n e iteração q em função do factor de carga da mesma iteração
$F'\left(\underline{a}_{n}^{q}\right)$	Força interna nodal equivalente em função dos deslocamentos na combinação n e iteração q
\underline{F}_n	Vector das forças exteriores na combinação n
\underline{F}_{n-1}	Vector das forças exteriores na combinação anterior após convergência
$\underline{F'}(\underline{a}_n)$	Vector das forças interiores em função dos deslocamentos na combinação n
\underline{F}_{F}	Vector das forças exteriores referente aos graus de liberdade livres
\underline{F}_{P}	Vector das forças exteriores referente aos graus de liberdade prescritos
$\underline{F'}_{F}$	Vector das forças internas referente aos graus de liberdade livres

$\underline{F'}_{P}$	Vector das forças internas referente aos graus de liberdade prescritos
G_f	Energia de fractura
$\left(\underline{K}_{T}\right)_{n}^{q-1}$	Matriz de rigidez tangente na combinação n e iteração $q-1$
\underline{K}_{FF}	Matriz de rigidez tangente referente aos graus de liberdade livres
\underline{K}_{PP}	Matriz de rigidez tangente referente aos graus de liberdade prescritos
\underline{K}_{PF}	Matriz de rigidez tangente referente à interacção entre os graus de liberdade livres e prescritos
n	Incremento ou combinação
P_1	Parâmetro que define a energia de modo I de fractura disponível para a nova fenda
q	Iteração
\underline{R}_{P}	Vector das reacções nos graus de liberdade prescritos
$lpha_{{\scriptscriptstyle th}}$	Ângulo a partir do qual se admite a possibilidade de formação de nova fenda
α,β	Factores de escala
δ	Deslocamento
δa_n^i	Deslocamento iterativo na combinação n e iteração i
$\delta \underline{a}_n^q$	Vector dos deslocamentos iterativos na combinação n e iteração q
$\delta \underline{a}_{n}^{i}$	Vector dos deslocamentos iterativos na combinação n e iteração i
$\delta a^q_{n,i},\delta a^q_{n,j}$	Componente <i>i</i> ou <i>j</i> do vector $\delta \underline{a}_n^q$
$\delta \underline{a}_{\scriptscriptstyle F}$	Vector dos deslocamentos iterativos referente aos graus de liberdade livres
$\delta \underline{a}_{P}$	Vector dos deslocamentos iterativos referente aos graus de liberdade prescritos
$\delta \underline{R}_P$	Vector das reacções iterativas nos graus de liberdade prescritos

$\delta \lambda^q$	Factor de carga iterativo da iteração q
Δa_n^i	Deslocamento incremental na combinação n e iteração i
Δa_i	Incremento do deslocamento prescrito na componente <i>i</i> do vector $\Delta \underline{a}_n^q$
Δa_{j-i}	Incremento do deslocamento relativo prescrito entre as componentes $i \in j$ do vector $\Delta \underline{a}_n^q$
$\Delta \underline{a}_{n}^{q}$	Vector dos deslocamentos incrementais na combinação n e iteração q
$\Delta \underline{a}_n^0$	Vector dos deslocamentos incrementais iniciais na combinação n
$\Delta \underline{a}^{q}_{n,k}$	Vector dos deslocamentos incrementais na combinação n e iteração q relativo à solução k
$\Delta a_{n,i}^q, \Delta a_{n,j}^q$	Componente <i>i</i> ou <i>j</i> do vector $\Delta \underline{a}_n^q$
$\Delta \underline{a}_F$	Vector dos deslocamentos incrementais referente aos graus de liberdade livres
$\Delta \underline{a}_P$	Vector dos deslocamentos incrementais referente aos graus de liberdade prescritos
ΔF	Incremento da força exterior
$\Delta \underline{F}$	Vector do incremento da força exterior
$\Delta \underline{F}_F$	Vector do incremento da força exterior referente aos graus de liberdade livres
$\Delta \underline{F}_P$	Vector do incremento da força exterior referente aos graus de liberdade prescritos
ΔL	Grandeza do arco
ΔL_i	Grandeza do arco na combinação <i>i</i>
η	Factor correctivo
λ^1	Factor de carga da primeira iteração
λ^q	Factor de carga da iteração q

ν	Coeficiente de Poisson
$ heta_k$	Ângulo entre deslocamentos incrementais de iterações consecutivas
ρ	Massa por unidade de volume
ξ_i , $lpha_i$	Parâmetros que definem o diagrama trilinear que representa a lei de amolecimento
Ψ^q_n	Força não equilibrada na combinação n e iteração q
$\underline{\Psi}_n$	Vector das forças não equilibradas na combinação n
$\underline{\Psi}\left(\underline{a}_{n}^{q}\right)$	Vector das forças não equilibradas em função dos deslocamentos na combinação n e iteração q
$\underline{\Psi}_{F}$	Vector das forças não equilibradas referente aos graus de liberdade livres
$\underline{\Psi}_{P}$	Vector das forças não equilibradas referente aos graus de liberdade prescritos

1 INTRODUÇÃO

Muitos problemas da engenharia civil recorrem ao método dos elementos finitos de forma a obter uma solução para casos em que não se conhece à partida uma solução analítica. O meio contínuo é discretizado num conjunto de elementos finitos (Zienkiewicz e Taylor 1989). O campo contínuo de deslocamentos é interpolado utilizando os deslocamentos nodais dos elementos finitos. Se o material tiver comportamento não linear, as equações obtidas pela aplicação do princípio dos trabalhos virtuais também são não lineares. Um procedimento incremental/iterativo é utilizado para resolver esse sistema de equações não lineares, sendo o método de *Newton-Raphson* correntemente utilizado na resolução deste tipo de problemas.

O sistema de equações de equilíbrio estendido a todos os graus de liberdade de uma estrutura pode ser representado pela seguinte expressão (Zienkiewicz e Taylor 1989)

$$\underline{K}\,\underline{a} = \underline{F} \tag{1}$$

em que \underline{K} é a matriz de rigidez da estrutura, \underline{a} é o vector dos deslocamentos nodais da estrutura e \underline{F} é o vector das forças nodais equivalentes às acções que actuam sobre a estrutura.

No contexto da análise não linear de estruturas o sistema de equações (1) não é linear, pois a matriz de rigidez depende do vector dos deslocamentos nodais <u>a</u> (Zienkiewicz e Taylor 1991). Com o objectivo de obter a resposta estrutural, a acção <u>F</u> deve ser aplicada de forma incremental, designando por incremento de carga o vector $\Delta \underline{F}_n$ que é adicionado ao vector de cargas da combinação n-1, \underline{F}_{n-1} , para se obter o vector de cargas da combinação n, \underline{F}_n ,

$$\underline{F}_n = \underline{F}_{n-1} + \Delta \underline{F}_n \tag{2}$$

Assim, para a combinação *n* a resposta estrutural pode ser obtida com base no anulamento dos desequilíbrios $\underline{\Psi}(\underline{a}_n)$, que são definidos da seguinte forma

$$\underline{\Psi}(\underline{a}_n) = \underline{F}_n - \underline{F'}(\underline{a}_n) \tag{3}$$

em que \underline{a}_n é o vector dos deslocamentos, \underline{F}_n é o vector das forças exteriores, $\underline{F'}(\underline{a}_n)$ é o vector das forças interiores e $\underline{\Psi}(\underline{a}_n)$ é o vector das forças não equilibradas. Para a combinação corrente, n, pretende-se que o vector das forças não equilibradas seja nulo, i.e.,

$$\underline{\Psi}(\underline{a}_n) = \underline{0} \tag{4}$$

O sistema de equações não lineares (4) pode ser resolvido utilizando o método de *Newton-Raphson*. Considerando apenas os dois primeiros termos do desenvolvendo em série de Taylor das funções $\underline{\Psi}(\underline{a}_n)$, obtém-se

$$\underline{\Psi}\left(\underline{a}_{n}^{q}\right) \approx \underline{\Psi}\left(\underline{a}_{n}^{q-1}\right) + \left(\frac{\partial \underline{\Psi}}{\partial \underline{a}}\right)_{n}^{q-1} \delta \underline{a}_{n}^{q} = \underline{0}$$

$$\tag{5}$$

Considerando a definição de $\underline{\Psi}(\underline{a}_n)$, indicada em (3), aplicada ao caso da iteração q-1 da combinação n, tem-se

$$\left(\frac{\partial \underline{\Psi}}{\partial \underline{a}}\right)_{n}^{q-1} = -\left(\frac{\partial \underline{F}'}{\partial \underline{a}}\right)_{n}^{q-1} = -\left(\underline{K}_{T}\right)_{n}^{q-1}$$
(6)

em que $(\underline{K}_T)_n^{q-1}$ é a matriz de rigidez tangente da iteração q-1 da combinação n.

Substituindo (6) em (5) resulta,

$$\left(\underline{K}_{T}\right)_{n}^{q-1}\delta\underline{a}_{n}^{q} = \underline{\Psi}\left(\underline{a}_{n}^{q-1}\right)$$

$$\tag{7}$$

Tendo em vista a resolução do sistema de equações (4), são efectuadas sucessivas aproximações à solução final recorrendo-se a

$$\underline{a}_{n}^{q} = \underline{a}_{n}^{q-1} + \delta \underline{a}_{n}^{q} = \underline{a}_{n-1} + \Delta \underline{a}_{n}^{q}$$

$$\tag{8}$$

com

$$\Delta \underline{a}_{n}^{q} = \sum_{i=1}^{q} \delta \underline{a}_{n}^{i} = \Delta \underline{a}_{n}^{q-1} + \delta \underline{a}_{n}^{q}$$
⁽⁹⁾

No início do processo iterativo $\underline{a}_n^0 = \underline{a}_{n-1} \in \Delta \underline{a}_n^0 = \underline{0}$.

Na Figura 1 representa-se a resposta para um sistema com um grau de liberdade relativamente a uma estrutura que apresenta amolecimento na fase de pós-pico. A simulação numérica deste tipo de estruturas pode ser efectuada por intermédio da aplicação directa de incrementos de força ΔF . Este procedimento é designado, na nomenclatura inglesa, por *load control*. Observando a Figura 1, verifica-se que nos casos em que o procedimento *load control* é adoptado não é possível obter a resposta numérica na fase pós-pico (pontos da curva entre A e B). Uma forma de contornar esta dificuldade consiste na utilização da incrementação em termos de deslocamentos. Este procedimento é designado, na nomenclatura inglesa, por *displacement control*. Assim, observando a Figura 2, conclui-se que com este procedimento é possível obter a resposta na fase pós-pico.

Na Figura 3 apresenta-se a resposta de uma estrutura com comportamento complexo. Quando o procedimento *load control* é usado na simulação numérica da estrutura, a resposta entre os pontos A e D não é obtida, i.e., a resposta é constituída apenas pelos pontos situados sobre a curva entre O e A e pelos pontos a partir de D. Este fenómeno é conhecido na nomenclatura inglesa por *snap-through*. Caso seja utilizado o procedimento *displacement control*, verifica-se que os pontos situados sobre a curva entre B e C não são obtidos, i.e., a resposta é constituída apenas pelos pontos O a B e pelos pontos a partir de C. Este fenómeno é conhecido, na nomenclatura inglesa, por *snap-back*. Com vista a ultrapassar estas dificuldades e obter a totalidade da resposta numérica representada na Figura 3, diversos investigadores propuseram diferentes técnicas, entre as quais se destaca a técnica designada por *arc-length*. Esta técnica foi originalmente proposta por Riks (1970) e Wempner (1971), tendo sido sucessivamente modificada por diversos investigadores (Crisfield 1983, 1986, Bashir-Ahmed e Xiao-zu 2004).

Algumas técnicas iterativas destinadas a ultrapassar dificuldades associadas à resolução de sistemas de equações não lineares, como o *arc-length* e métodos relacionados, introduzem uma variação da carga durante o processo iterativo correspondente ao método de *Newton-Raphson*. O nível da carga passa a ser também uma incógnita e torna-se necessário considerar uma equação adicional. Esta equação restringe a solução de forma a cumprir um determinado critério. Nestas condições os métodos passam a ser designados métodos com solução restringida (*constrained methods* na nomenclatura inglesa).

Nas secções seguintes é apresentada a técnica do *arc-length* e métodos relacionados, assim como a forma como estes foram implementados no código computacional FEMIX 4.0 (Azevedo *et al.* 2003).

Figura 1 - Procedimento load control.

Figura 2 – Procedimento displacement control.

Figura 3 – Resposta F-a de uma estrutura: fenómenos de snap-through e snap-back.

2 TÉCNICA DO ARC-LENGTH

Na Figura 4 está representada uma relação não linear entre a força e o deslocamento num sistema com um grau de liberdade.

Figura 4 – Técnica do arc-length aplicada a um sistema com um grau de liberdade (b = 1.0).

No âmbito da análise não linear da referida estrutura é utilizado um procedimento incremental de carregamento. Na Figura 4 está também representada a variação de força e deslocamento correspondente ao incremento de carga existente entre as combinações n-1 e n. A utilização de um incremento de carga ΔF_n conduziria a uma solução que se afasta demasiado do ponto A, ultrapassando o pico correspondente ao ponto C. Deste modo não é obtida e evolução do comportamento da estrutura entre os pontos A e D. Com o objectivo de ficar a conhecer esse comportamento, o incremento de carga é multiplicado por um factor λ cujo valor fica definido por intermédio da seguinte restrição, que corresponde à obtenção de uma solução localizada sobre o arco de raio ΔL representado na Figura 4.

$$\left(\Delta a_n\right)^2 + \lambda^2 b^2 \left(\Delta F_n\right)^2 = \Delta L^2 \tag{10}$$

Nesta equação b representa um factor de escala que converte a ordem de grandeza da força na ordem de grandeza do deslocamento.

De acordo com a Figura 4, a seguinte expressão define, em função de λ , o valor da força exterior na combinação *n*

$$F_n\left(\lambda\right) = F_{n-1} + \lambda \,\Delta F_n \tag{11}$$

A expressão que define a força não equilibrada (resíduo) da combinação n, Ψ_n , é a seguinte

$$\Psi_n = F_n\left(\lambda\right) - F'\left(a_n\right) \tag{12}$$

em que $F'(a_n)$ é a força interna obtida com base no deslocamento correspondente à combinação corrente, a_n .

De acordo com as equações (11) e (12) o anulamento das forças não equilibradas corresponde a

$$\Psi_n = \Psi(a_n, \lambda) = F_n(\lambda) - F'(a_n) = F_{n-1} + \lambda \Delta F_n - F'(a_n) = 0$$
(13)

No âmbito do método de *Newton-Raphson*, pretende-se que na iteração q sejam respeitadas as equações (10) e (13), resultando

$$\Psi\left(a_{n}^{q},\lambda^{q}\right) = F_{n}^{q}\left(\lambda^{q}\right) - F'\left(a_{n}^{q}\right) = F_{n-1} + \lambda^{q}\Delta F_{n} - F'\left(a_{n}^{q}\right) = 0$$
(14a)

$$f\left(\Delta a_{n}^{q},\lambda^{q}\right) = \left(\Delta a_{n}^{q}\right)^{2} + b^{2}\left(\lambda^{q}\right)^{2}\left(\Delta F_{n}\right)^{2} - \Delta L^{2} = 0$$
(14b)

O processo iterativo correspondente ao método de *Newton-Raphson* com a técnica do *arc-length* encontra-se esquematizado na Figura 5.

Figura 5 – Processo iterativo associado à técnica do arc-length aplicada a um sistema com um grau de liberdade (b = 1.0).

No presente trabalho é contemplada a possibilidade de aplicação de várias combinações de carga tratadas com o método de *Newton-Raphson* sem *arc-length* seguidas de um conjunto de combinações em que é aplicada a técnica do *arc-length* com ΔF_n constante. Neste âmbito o incremento de força exterior passa a ser designado por ΔF .

Na Figura 6 representa-se a aplicação do método de Newton-Raphson sem e com arc-length.

Figura 6 – Método de Newton-Raphson sem e com a técnica do arc-length.

A aplicação da técnica do *arc-length* em problemas com mais do que um grau de liberdade consiste na generalização das equações (14), que conduz ao seguinte sistema de equações não lineares

$$\underline{\Psi}\left(\underline{a}_{n}^{q},\lambda^{q}\right) = \underline{F}_{n}^{q}\left(\lambda^{q}\right) - \underline{F}'\left(\underline{a}_{n}^{q}\right) = \underline{F}_{n-1} + \lambda^{q}\Delta\underline{F} - \underline{F}'\left(\underline{a}_{n}^{q}\right) = \underline{0}$$
(15a)

$$f\left(\Delta \underline{a}_{n}^{q}, \lambda^{q}\right) = \left[\Delta \underline{a}_{n}^{q}\right]^{T} \Delta \underline{a}_{n}^{q} + b^{2} \left(\lambda^{q}\right)^{2} \left[\Delta \underline{F}\right]^{T} \Delta \underline{F} - \Delta L^{2} = 0$$
(15b)

Segundo Crisfield (1991), para os problemas correntes, o factor b pode ser nulo.

Tendo em vista a utilização do método de *Newton-Raphson* para obter a solução de (15), são considerados os dois primeiros termos do desenvolvendo em série de Taylor das funções que figuram no sistema de equações não lineares, resultando

$$\underline{\Psi}\left(\underline{a}_{n}^{q},\lambda^{q}\right) \approx \underline{\Psi}\left(\underline{a}_{n}^{q-1},\lambda^{q-1}\right) + \left(\frac{\partial\underline{\Psi}}{\partial\underline{a}}\right)_{n}^{q-1} \delta \underline{a}_{n}^{q} + \left(\frac{\partial\underline{\Psi}}{\partial\lambda}\right)_{n}^{q-1} \delta\lambda^{q} = \underline{0}$$

$$(16a)$$

$$f\left(\Delta\underline{a}_{n}^{q},\lambda^{q}\right) \approx f\left(\Delta\underline{a}_{n}^{q-1},\lambda^{q-1}\right) + \left[\left(\frac{\partial f}{\partial(\Delta\underline{a})}\right)_{n}^{q-1}\right]^{r} \delta\left(\Delta\underline{a}\right)_{n}^{q} + \left(\frac{\partial f}{\partial\lambda}\right)_{n}^{q-1} \delta\lambda^{q} = 0 \quad (16b)$$

sendo

$$\left(\frac{\partial \underline{\Psi}}{\partial \underline{a}}\right)_{n}^{q-1} = -\left(\frac{\partial \underline{F}'}{\partial \underline{a}}\right)_{n}^{q-1} = -\left(\underline{K}_{T}\right)_{n}^{q-1}$$
(17)

$$\left(\frac{\partial \underline{\Psi}}{\partial \lambda}\right)_{n}^{q-1} = \Delta \underline{F}$$
(18)

$$\left(\frac{\partial f}{\partial (\Delta \underline{a})}\right)_{n}^{q-1} = 2\Delta \underline{a}_{n}^{q-1}$$
(19)

$$\left(\frac{\partial f}{\partial \lambda}\right)_{n}^{q-1} = 2b^{2}\lambda^{q-1} \left[\Delta \underline{F}\right]^{T} \Delta \underline{F}$$
(20)

Em (17), $(\underline{K}_T)_n^{q-1}$ é a matriz de rigidez tangente.

Uma vez que $\underline{a}_n = \underline{a}_{n-1} + \Delta \underline{a}_n \text{ com } \underline{a}_{n-1} \text{ constante, tem-se}$

$$\delta \underline{a}_{n}^{q} = \delta \left(\Delta \underline{a} \right)_{n}^{q} \tag{21}$$

Substituindo em (16) as equações (17) a (21), resulta

$$\begin{bmatrix} -(\underline{K}_{T})_{n}^{q-1} & \Delta \underline{F} \\ 2\left[\Delta \underline{a}_{n}^{q-1}\right]^{T} & 2b^{2}\lambda^{q-1}\left[\Delta \underline{F}\right]^{T}\Delta \underline{F} \end{bmatrix} \begin{bmatrix} \delta \underline{a}_{n}^{q} \\ \delta \lambda^{q} \end{bmatrix} = -\begin{bmatrix} \underline{\Psi}\left(\underline{a}_{n}^{q-1}, \lambda^{q-1}\right) \\ f\left(\Delta \underline{a}_{n}^{q-1}, \lambda^{q-1}\right) \end{bmatrix}$$
(22)

No sistema de equações lineares (22) a matriz dos coeficientes não é simétrica. Para continuar a beneficiar das vantagens inerentes à resolução de um sistema de equações lineares com uma matriz simétrica, Crisfield (1991) propõe a substituição de $\Delta \underline{a}_n^q$ na restrição (15b). Este procedimento é em seguida descrito.

Substituindo (17) e (18) em (16a) obtém-se

$$\left(\underline{K}_{T}\right)_{n}^{q-1}\delta\underline{a}_{n}^{q} = \underline{\Psi}\left(\underline{a}_{n}^{q-1},\lambda^{q-1}\right) + \Delta\underline{F}\,\delta\lambda^{q}$$

$$\tag{23}$$

Explicitando o deslocamento iterativo $\delta \underline{a}_n^q$, obtém-se

$$\delta \underline{a}_{n}^{q} = \left[\left(\underline{K}_{T} \right)_{n}^{q-1} \right]^{-1} \underline{\Psi} \left(\underline{a}_{n}^{q-1}, \lambda^{q-1} \right) + \left[\left(\underline{K}_{T} \right)_{n}^{q-1} \right]^{-1} \Delta \underline{F} \, \delta \lambda^{q} \\ = \delta \underline{\overline{a}}_{n}^{q-1} + \delta \lambda^{q} \delta \underline{\overline{a}}_{n}^{q-1}$$
(24)

em que

$$\delta \underline{\overline{a}}_{n}^{q-1} = \left[\left(\underline{K}_{T} \right)_{n}^{q-1} \right]^{-1} \underline{\Psi} \left(\underline{a}_{n}^{q-1}, \lambda^{q-1} \right)$$
(25)

e

$$\delta \underline{\overline{\overline{a}}}_{n}^{q-1} = \left[\left(\underline{K}_{T} \right)_{n}^{q-1} \right]^{-1} \Delta \underline{F}$$
(26)

sendo, de acordo com a equação (15a)

$$\underline{\Psi}\left(\underline{a}_{n}^{q-1},\lambda^{q-1}\right) = \underline{F}_{n-1} + \lambda^{q-1}\Delta\underline{F} - \underline{F}'\left(\underline{a}_{n}^{q-1}\right)$$

$$\tag{27}$$

As sucessivas actualizações da solução corrente são efectuadas com a seguinte equação (ver a Figura 5 para o caso unidimensional)

$$\underline{a}_{n}^{q} = \underline{a}_{n}^{q-1} + \delta \underline{a}_{n}^{q} = \underline{a}_{n-1} + \Delta \underline{a}_{n}^{q}$$

$$\tag{28}$$

sendo

$$\Delta \underline{a}_{n}^{q} = \sum_{i=1}^{q} \delta \underline{a}_{n}^{i} = \Delta \underline{a}_{n}^{q-1} + \delta \underline{a}_{n}^{q}$$
⁽²⁹⁾

No início do processo iterativo considera-se que $\underline{a}_n^0 = \underline{a}_{n-1} \in \Delta \underline{a}_n^0 = \underline{0}$.

No processo iterativo associado ao método de *Newton-Raphson*, o factor de carga λ^q é actualizado com a seguinte expressão

$$\lambda^q = \lambda^{q-1} + \delta \lambda^q \tag{30}$$

Substituindo as equações (24), (29) e (30) na equação (15b) resulta a seguinte equação do segundo grau (ver o Anexo I)

$$a_1 \left(\delta \lambda^q\right)^2 + a_2 \delta \lambda^q + a_3 = 0 \tag{31}$$

em que $\delta \lambda^q$ é a incógnita e

$$a_{1} = \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \delta \overline{\underline{a}}_{n}^{q-1} + b^{2} \left[\Delta \underline{F}\right]^{T} \Delta \underline{F}$$

$$a_{2} = 2 \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \left(\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1}\right) + 2b^{2} \lambda^{q-1} \left[\Delta \underline{F}\right]^{T} \Delta \underline{F}$$

$$a_{3} = \left[\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \left(\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1}\right) + b^{2} \left(\lambda^{q-1}\right)^{2} \left[\Delta \underline{F}\right]^{T} \Delta \underline{F} - \Delta L^{2}$$
(32)

Na generalidade dos casos a equação (31) tem duas soluções reais ($\delta \lambda_1^q \in \delta \lambda_2^q$). Atendendo às equações (24) e (29) tem-se para cada $\delta \lambda_k^q$

$$\Delta \underline{a}_{n,k}^{q} = \Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1} + \delta \lambda_{k}^{q} \delta \overline{\underline{\overline{a}}}_{n}^{q-1}, \text{ com } k = 1 \text{ ou } k = 2$$
(33)

Assim, existem duas possíveis modificações do vector dos deslocamentos, $\Delta \underline{a}_{n,1}^q$ e $\Delta \underline{a}_{n,2}^q$.

Tendo em vista a selecção de uma das duas soluções, é calculado, para cada uma delas, o co-seno do ângulo entre os vectores que representam a variação da solução na iteração actual $\left(\Delta \underline{a}_{n,k}^{q}\right)$ e na iteração anterior $\left(\Delta \underline{a}_{n}^{q-1}\right)$, representando *k* o número da solução de (31) (1 ou 2). Assim,

$$\cos \theta_{k} = \frac{\left[\Delta \underline{a}_{n}^{q-1}\right]^{T} \Delta \underline{a}_{n,k}^{q}}{\left\|\Delta \underline{a}_{n}^{q-1}\right\| \left\|\Delta \underline{a}_{n,k}^{q}\right\|}$$
(34)

Tendo como objectivo a escolha de uma solução que mantenha na solução corrente uma direcção semelhante à que foi utilizada na iteração anterior, é seleccionada a alternativa à qual corresponde um menor ângulo θ_k (ver a Figura 7). A solução que apresenta o menor ângulo é também aquela que apresenta o maior valor do co-seno de θ_k , sendo este o critério adoptado. No exemplo da Figura 7 é seleccionada a solução 1 $(\delta \lambda_1^q)$.

Se em (31) a_1 for nulo, $\delta \lambda^q$ é calculado com a seguinte expressão

$$\delta\lambda^q = -a_3/a_2 \tag{35}$$

Se a equação (31) não tiver qualquer solução, a técnica do *arc-length* não pode ser utilizada. Nestas circunstâncias sugere-se que o processo iterativo seja reiniciado com outros parâmetros de forma a permitir uma progressão com menores incrementos de carga.

A Figura 5 ilustra a aplicação da técnica do *arc-length* num sistema com um grau de liberdade. Nestas circunstâncias constata-se que para aplicar a técnica do *arc-length* numa

determinada combinação é necessário definir na primeira iteração qual o valor do parâmetro ΔL . Com este objectivo é efectuada a primeira iteração com $\lambda^1 = 1.0$, correspondendo este procedimento ao método de *Newton-Raphson* clássico, i.e., sem recurso à técnica do *arc-length*. Nestas circunstâncias e atendendo às equações, (24)-(27), (29) e (30) tem-se

$$\Delta \underline{a}_{n}^{1} = \delta \underline{a}_{n}^{1} = \left[\left(\underline{K}_{T}^{0} \right) \right]^{-1} \left\{ F_{n-1} + \lambda^{1} \Delta \underline{F} - F' \left(\underline{a}_{n}^{0} \right) \right\} = \\ = \left[\left(\underline{K}_{T}^{0} \right) \right]^{-1} \underline{\Psi} \left(\underline{a}_{n}^{0} \right)$$
(36)

sendo $\lambda^1 = 1.0$.

Conhecido Δa_n^1 , é possível calcular o valor do parâmetro ΔL com o recurso à equação (15b), resultando

$$\Delta L = \left\{ \left[\Delta \underline{a}_{n}^{1} \right]^{T} \Delta \underline{a}_{n}^{1} + b^{2} \left[\lambda^{1} \right]^{2} \left[\Delta \underline{F} \right]^{T} \Delta \underline{F} \right\}^{0.5}, \text{ com } \lambda^{1} = 1.0$$
(37)

O valor de ΔL obtido com este procedimento é mantido constante durante a corrente combinação. Com esta estratégia de determinação de ΔL evita-se a necessidade de fornecer o seu valor como um dado do problema.

Nos incrementos de carga subsequentes é possível seleccionar uma das estratégias que são em seguidas descritas. Na primeira, que na nomenclatura inglesa é designada *constant arc-length*, o valor do parâmetro ΔL que foi calculado no primeiro incremento com *arc-length* é mantido constante nos restantes incrementos. A segunda estratégia, que na nomenclatura inglesa é designada *variable arc-length*, consiste em repetir o procedimento correspondente às equações (36) e (37) em todos os incrementos com *arc-length*.

3 DESLOCAMENTO CONTROLADO NUM GRAU DE LIBERDADE

A simulação numérica de alguns problemas estruturais com não linearidades localizadas em determinadas zonas da estrutura por aplicação do método do *arc-length* pode conduzir

a instabilidades no processo de convergência incremental/iterativo. Esta deficiência pode ser contornada seguindo-se a estratégia utilizada por Batoz and Dhatt (1979) e que consiste em restringir o deslocamento incremental de uma variável específica a um valor predefinido. Este controlo de deslocamento é efectuado sem ser necessário acrescentar qualquer apoio. Este procedimento é designado na nomenclatura inglesa por *displacement control at a specific variable*. Assim, a equação (15b) é substituída pela seguinte equação,

$$\Delta a_{n,i}^q = \Delta a_i \tag{38}$$

em que $\Delta a_{n,i}^q$ é a componente *i* do vector $\Delta \underline{a}_n^q$ e Δa_i é a sua magnitude incremental predefinida.

Durante o processo iterativo o valor incremental da componente *i* do vector $\Delta \underline{a}_n^q$ mantém-se constante e igual a Δa_i , i.e., a variação iterativa dessa componente $(\delta a_{n,i}^q)$ é nula. Tendo em conta este facto e também a equação (29) escrita para a componente *i* do vector $\Delta \underline{a}_n^q$, pode-se escrever a seguinte equação

$$\Delta a_{n,i}^q = \Delta a_{n,i}^{q-1} + \delta a_{n,i}^q = \Delta a_{n,i}^{q-1} = \Delta a_i \tag{39}$$

Para um determinado incremento n, os deslocamentos iterativos $\delta \underline{a}_n^q$ são obtidos com a equação (24). Escrevendo essa equação para a componente i resulta

$$\delta a_{n,i}^{q} = \delta \overline{a}_{n,i}^{q-1} + \delta \lambda^{q} \delta \overline{\overline{a}}_{n,i}^{q-1} \tag{40}$$

Anulando o deslocamento iterativo $\delta a_{n,i}^q$ na equação (40) e resolvendo-a em ordem a $\delta \lambda^q$ obtém-se a variação iterativa do factor de carga

$$\delta\lambda^q = -\frac{\delta\overline{a}_{n,i}^{q-1}}{\delta\overline{\overline{a}}_{n,i}^{q-1}} \tag{41}$$

O vector dos deslocamentos incrementais da primeira iteração pode ser obtido por intermédio da equação (36) com $\lambda^1 = 1.0$. De forma a cumprir, para a componente *i* do vector $\Delta \underline{a}_n^q$, o valor predefinido Δa_i (ver a equação (38)) é necessário efectuar algumas correcções, nomeadamente ao factor de carga inicial. A pormenorização destas correcções é exposta na Secção 6.

4 DESLOCAMENTO RELATIVO CONTROLADO POR DOIS GRAUS DE LIBERDADE

Como se referiu na Secção 3, a simulação numérica de estruturas em que ocorrem não linearidades localizadas com o recurso à utilização da equação (15b) torna-se, por vezes, impossível. Na tentativa de evitar a instabilidade do processo de convergência incremental/iterativo, de Borst (1986) sugeriu que na equação (15b) fossem apenas consideradas algumas componentes preseleccionadas do vector $\Delta \underline{a}_n^q$. No caso de estruturas em que ocorre fendilhação localizada, a solução passa pela escolha, de um modo apropriado, de dois graus de liberdade (componentes de deslocamentos), um em cada face de uma fenda, e igualar a sua diferença a um determinado valor. Este controlo do deslocamento relativo entre os referidos pontos é efectuado sem ser necessário acrescentar qualquer apoio. Assim, a equação (15b) é substituída pela seguinte equação

$$\Delta a_{n,j}^q - \Delta a_{n,i}^q = \Delta a_{j-i} \tag{42}$$

Nesta equação, $\Delta a_{n,i}^q \in \Delta a_{n,j}^q$ são, respectivamente, as componentes *i* e *j* do vector $\Delta \underline{a}_n^q$ e Δa_{i-i} é a magnitude incremental predefinida entre essas duas componentes.

Durante o processo iterativo o deslocamento incremental relativo entre as componentes *i* e *j* do vector $\Delta \underline{a}_n^q$ mantém-se constante e igual a Δa_{j-i} , i.e., a variação iterativa relativa entre essas componentes $(\delta a_{n,j}^q - \delta a_{n,i}^q)$ é nula. Tendo em conta este facto e também a equação (29) escrita para as componentes *i* e *j* do vector $\Delta \underline{a}_n^q$, pode-se escrever a seguinte equação

$$\Delta a_{n,j}^{q} - \Delta a_{n,i}^{q} = \left(\Delta a_{n,j}^{q-1} + \delta a_{n,j}^{q}\right) - \left(\Delta a_{n,i}^{q-1} + \delta a_{n,i}^{q}\right)$$
$$= \Delta a_{n,j}^{q-1} - \Delta a_{n,i}^{q-1}$$
$$= \Delta a_{j-i}$$
(43)

Os deslocamentos iterativos $\delta \underline{a}_n^q$ para um determinado incremento *n* são obtidos com a equação (24). Escrevendo essa equação para as componentes *i* e *j* resulta

$$\delta a_{n,i}^{q} = \delta \overline{a}_{n,i}^{q-1} + \delta \lambda^{q} \delta \overline{\overline{a}}_{n,i}^{q-1} \tag{44}$$

$$\delta a_{n,j}^{q} = \delta \overline{a}_{n,j}^{q-1} + \delta \lambda^{q} \delta \overline{\overline{a}}_{n,j}^{q-1} \tag{45}$$

O deslocamento iterativo relativo entre as componentes $i \in j$ é definido pela seguinte equação

$$\delta a_{n,j}^{q} - \delta a_{n,i}^{q} = \left(\delta \overline{a}_{n,j}^{q-1} + \delta \lambda^{q} \delta \overline{\overline{a}}_{n,j}^{q-1}\right) - \left(\delta \overline{a}_{n,i}^{q-1} + \delta \lambda^{q} \delta \overline{\overline{a}}_{n,i}^{q-1}\right)$$
(46)

Procedendo-se ao anulamento do deslocamento iterativo relativo da equação (46) e resolvendo-a em ordem a $\delta \lambda^q$, obtém-se a variação iterativa do factor de carga

$$\delta\lambda^{q} = -\frac{\delta\overline{a}_{n,j}^{q-1} - \delta\overline{a}_{n,i}^{q-1}}{\delta\overline{\overline{a}}_{n,j}^{q-1} - \delta\overline{\overline{a}}_{n,i}^{q-1}}$$
(47)

Tal como na secção anterior, o vector dos deslocamentos incrementais da primeira iteração pode ser obtido por intermédio da equação (36) com $\lambda^1 = 1.0$. De forma a cumprir, o valor predefinido Δa_{j-i} entre as componentes *i* e *j* do vector $\Delta \underline{a}_n^q$ (ver a equação (42)) é necessário efectuar algumas correcções, nomeadamente ao factor de carga inicial. A pormenorização destas correcções é exposta na Secção 6.

Com este procedimento, designado na nomenclatura inglesa por *relative displacement control between two specific variables*, é possível obter a resposta numérica do comportamento de uma estrutura onde se evidencia a ocorrência do fenómeno *snap-back*

(ver a Figura 3). Uma outra possível aplicação desta técnica é na simulação de ensaios em que se controla a abertura da fenda (*Crack Mouth Opening Displacement control*, na nomenclatura inglesa).

5 OPÇÕES RELATIVAS AO RESTART

Quando no processo incremental/iterativo não é encontrada uma solução que satisfaça o sistema de equações não lineares, torna-se necessário fazer alterações aos parâmetros iniciais do problema. Para ultrapassar o problema da não convergência alguns investigadores (Crisfield 1991 e Póvoas 1991) sugerem diversas técnicas, sendo uma delas a diminuição automática da grandeza do incremento de carga. No âmbito do presente trabalho sugere-se a utilização da funcionalidade de *restart* que já se encontra disponível no código computacional FEMIX 4.0. O termo *restart* significa retomar o processo incremental/iterativo após a alteração de alguns parâmetros iniciais do problema. Assim, multiplica-se o vector ΔF (que é mantido sempre constante durante o *arc-length*) e o escalar ΔL pelos parâmetros α e β , respectivamente. As expressões apresentadas na Secção 2 permanecem válidas, desde que se substitua ΔF por $\alpha \Delta F$ e ΔL por $\beta \Delta L$. Sendo assim, ao efectuar o parâmetro α e na opção de *constant arc-length* pode-se alterar o parâmetro α e na opção de *constant arc-length* pode-se alterar o parâmetro β .

Na opção *displacement control at a specific variable* e na opção *relative displacement control between two specific variables*, o valor da magnitude incremental predefinida (ver as Secções 3 e 4) pode ser alterado ao efectuar o *restart* do processo incremental/iterativo.

6 INTRODUÇÃO DAS TÉCNICAS NUMÉRICAS NO PROGRAMA FEMIX

Nesta secção são descritos de forma sucinta os aspectos essenciais associados à implementação da técnica do *arc-length* e métodos relacionados no programa de cálculo automático FEMIX 4.0 (Azevedo *et al.* 2003).

Nas simulações em que se pretende recorrer à técnica do *arc-length*, esta começa a ser utilizada na última combinação de carga que figura no ficheiro de dados (n_F) . Nas combinações seguintes o incremento de carga entre as combinações $(n_F - 1) e n_F (\Delta \underline{F}) é$ mantido constante. O número máximo de combinações sem e com *arc-length* é $n = n_F - 1 + n_A$, sendo n_A o número máximo de combinações com *arc-length*. Em cada uma das n_A combinações com *arc-length* o incremento de carga $\Delta \underline{F}$ é multiplicado pelo factor λ (ver a Figura 6).

Como na primeira iteração de cada combinação com *arc-length*, o factor de carga é igual a 1.0 ($\lambda^1 = 1.0$), esta é tratada como uma iteração clássica de *Newton-Raphson* (ver a Figura 5). Como para algumas das opções atrás apresentadas, o factor de carga inicial não é igual a 1.0, tem que se corrigir o vector das forças exteriores, $\underline{F}_n^1(\lambda^1)$, o vector dos deslocamentos, $\Delta \underline{a}_n^1$ e o factor de carga inicial, de forma a respeitar a equação restritiva de cada opção. Na Figura 8 representa-se, de forma esquemática, o procedimento adoptado na primeira iteração de cada incremento de carga, sendo utilizado um factor correctivo η , calculado de acordo com a opção utilizada:

- constant arc-length

Nesta opção o factor correctivo η é obtido por intermédio do quociente entre o valor do arco constante e o valor do arco calculado com a equação (37), considerando $\lambda^1 = 1.0$,

$$\eta = \frac{\Delta L}{\Delta L(\lambda^1 = 1.0)} \tag{48}$$

- displacement control at a specific variable

$$\eta = \frac{\Delta a_i}{\Delta a_{n,i}^1} = \frac{\Delta a_i}{\delta a_{n,i}^1} \tag{49}$$

- relative displacement control between two specific variables

$$\eta = \frac{\Delta a_{j-i}}{\Delta a_{n,j}^1 - \Delta a_{n,i}^1} = \frac{\Delta a_{j-i}}{\delta a_{n,j}^1 - \delta a_{n,i}^1}$$
(50)

Figura 8 – Correcção de um incremento de carga por intermédio de um factor η .

Com o objectivo de apresentar de um modo sucinto as alterações efectuadas no programa FEMIX 4.0, descreve-se em seguida o algoritmo incremental/iterativo correspondente ao método de *Newton-Raphson* sem e com *arc-length*. A principal diferença entre estes dois algoritmos consiste no facto de o último ter mais uma incógnita, o que origina algumas alterações nos diversos passos do processo incremental/iterativo. Uma vez que o código computacional FEMIX agrupa em diferentes vectores as grandezas correspondentes a graus de liberdade livres e a graus de liberdade prescritos, opta-se por identificar cada um destes casos com o índice *F* (*free*) e *P* (*prescribed*), respectivamente (ver o Anexo II). O código também permite optar entre as estratégias *path dependent* (PD) ou *path independent* (PI) (Sena-Cruz 2004).

No Anexo III são enumerados os parâmetros relacionados com a técnica do *arc-length* que podem ser introduzidos no ficheiro de dados.

Nota: nos seguintes algoritmos a + = b significa $a \leftarrow a + b$.

Método de Newton-Raphson sem arc-length:

I.

Ciclo às
combinações

$$\rightarrow \Delta \underline{a}_{F} = \underline{0} \ (PI \text{ only})$$

$$\rightarrow \Delta \underline{F}_{F}, \ \Delta \underline{F}_{P}, \ \underline{F}_{F} + = \Delta \underline{F}_{F}, \ \underline{F}_{P} + = \Delta \underline{F}_{P}, \ \Delta \underline{a}_{P}, \ \delta \underline{a}_{P} = \Delta \underline{a}_{P}$$

$$\underline{\Psi}_{F} + = \Delta \underline{F}_{F}, \ \underline{\Psi}_{P} + = \Delta \underline{F}_{P}$$
Ciclo às
iterações

$$\rightarrow \underline{K}_{FF} \delta \underline{a}_{F} = \underline{\Psi}_{F} - \underline{K}_{FP} \delta \underline{a}_{P}$$

$$\rightarrow \delta \underline{R}_{P} = \underline{K}_{PF} \delta \underline{a}_{F} + \underline{K}_{PP} \delta \underline{a}_{P} - \underline{\Psi}_{P}$$

$$\rightarrow \Delta \underline{a}_{F} + = \delta \underline{a}_{F} \ (PI); \ \Delta \underline{a}_{F} = \delta \underline{a}_{F} \ (PD)$$

$$\underline{a}_{F} + = \delta \underline{a}_{F}, \ \underline{R}_{P} + = \delta \underline{R}_{P}$$

$$\rightarrow \underline{\Psi}_{F} = \underline{F}_{F} - \underline{F}'_{F}, \ \underline{\Psi}_{P} = \underline{F}_{P} + \underline{R}_{P} - \underline{F}'_{P}$$

$$\rightarrow \delta \underline{a}_{P} = \underline{0}$$

$$\rightarrow \Delta \underline{a}_{P} = \underline{0} \ (PD \text{ only})$$

Método de Newton-Raphson com arc-length:

Ciclo às
combinações

$$\begin{array}{c} \Rightarrow \ \Delta \underline{a}_{F} = \underline{0} \ (PI \text{ only}), \ \Delta \underline{a}_{P} = \underline{0}, \ \lambda = 1.0 \\ \Rightarrow \ \Delta \underline{F}_{F}, \ \Delta \underline{F}_{P}, \ \underline{F}_{F} + = \lambda \Delta \underline{F}_{F}, \ \underline{F}_{P} + = \lambda \Delta \underline{F}_{P} \\ \underline{\Psi}_{F} + = \lambda \Delta \underline{F}_{F}, \ \underline{\Psi}_{P} + = \lambda \Delta \underline{F}_{P} \\ \text{Ciclo às} \\ \text{iterações} \end{array} \begin{array}{c} \Rightarrow \ \underline{K}_{FF} \delta \underline{\overline{a}}_{F} = \underline{\Psi}_{F} - \underline{K}_{FP} \delta \underline{a}_{P}, \ \underline{K}_{FF} \delta \underline{\overline{a}}_{F} = \Delta \underline{F}_{F} \\ \Rightarrow \ \delta \lambda - \text{equação (31), (41) ou (47)} \\ \Rightarrow \ \delta \underline{a}_{F} = \delta \underline{\overline{a}}_{F} + \delta \underline{\overline{a}}_{F} \delta \lambda \\ \lambda + = \delta \lambda, \ \underline{F}_{F} + = \delta \lambda \Delta \underline{F}_{F}, \ \underline{F}_{P} + = \delta \lambda \Delta \underline{F}_{P} \\ \Rightarrow \ \delta \underline{R}_{P} = \underline{K}_{PF} \delta \underline{a}_{F} + \underline{K}_{PP} \delta \underline{a}_{P} - \underline{\Psi}_{P} - \Delta \underline{F}_{P} \delta \lambda \\ \Rightarrow \ \Delta \underline{a}_{F} + = \delta \underline{a}_{F} \ (PI); \ \Delta \underline{a}_{F} = \delta \underline{a}_{F} \ (PD) \\ \underline{a}_{F} + = \delta \underline{a}_{F}, \ \underline{R}_{P} + = \delta \underline{R}_{P} \\ \Rightarrow \ \underline{\Psi}_{F} = \underline{F}_{F} - \underline{F}'_{F}, \ \underline{\Psi}_{P} = \underline{F}_{P} + \underline{R}_{P} - \underline{F}'_{P} \end{array}$$

Ventura Gouveia, Joaquim Barros, Álvaro Azevedo e José Sena Cruz

7 EXEMPLOS

Nesta secção incluem-se os resultados obtidos em simulações numéricas, com o objectivo de mostrar as vantagens da utilização das técnicas anteriormente descritas na modelação de estruturas com comportamento não linear material.

7.1 Simulação numérica de uma viga sujeita a três pontos de carga

Neste exemplo é efectuada a simulação de uma viga de betão sujeita a três pontos de carga (RILEM 1985). São utilizadas as diversas técnicas descritas neste trabalho e os resultados obtidos são comparados com a simulação efectuada por Rots (1988). A malha utilizada para a discretização das vigas é a apresentada na Figura 9, sendo consideradas as aproximações correspondentes a um estado plano de tensão. São utilizados elementos de Lagrange de 4 nós com um esquema de integração de Gauss-Legendre de 2×2 . Com o objectivo de caracterizar adequadamente a fendilhação na zona do entalhe, a integração de Gauss-Legendre é efectuada, nos elementos centrais, com base num padrão de 1×2 pontos. Na simulação do comportamento não linear material do betão é considerado um modelo de multi-fendas distribuídas (Sena Cruz *et al.* 2004). Na Tabela 1 encontram-se as propriedades do betão que é utilizado na simulação. Foi considerado um critério de convergência baseado na norma do vector das forças residuais, sendo a tolerância igual a 0.1%. O peso próprio é também incluído na simulação.

Figura 9 - Viga com entalhe: geometria, malha, carregamento e apoios.

Massa específica	$\rho = 2.4 \times 10^{-6} \text{ Kg/mm}^3$
Coeficiente de Poisson	v = 0.20
Módulo de Young	$E_c = 20000.0 \text{ N/mm}^2$
Resistência à compressão	$f_c = 48.0 \text{ N/mm}^2$
Resistência à tracção	$f_{ct} = 2.4 \text{ N/mm}^2$
Parâmetros do amolecimento trilinear	$\xi_1 = 0.4; \ \alpha_1 = 0.6; \ \xi_2 = 0.8; \ \alpha_2 = 0.2$
Energia de fractura	$G_f = 0.113 \text{ N/mm}$
Parâmetro que define o modo I da energia de fractura disponível para a nova fenda	$p_1 = 2$
Factor de retenção para o corte	Exponencial com $p_2 = 2$
Banda de fendilhação	Raiz quadrada da área do elemento
Ângulo para formação de nova fenda	$\alpha_{th} = 30^{\circ}$

Tabela 1 – Propriedades do betão utilizado na simulação da viga sujeita a três pontos de carga.

7.1.1 Procedimento load control

Na Figura 10 encontra-se representada a relação força-deslocamento vertical a meio vão correspondente à análise da viga da Figura 9 com o procedimento *load control*. Costata-se que com este procedimento não é possível obter numericamente o comportamento da estrutura em amolecimento (*softening*, na nomenclatura inglesa).

Figura 10 - Relação força-deslocamento vertical a meio vão.

7.1.2 Procedimento displacement control por assentamentos de apoio

O problema numérico identificado na Secção 7.1.1 pode ser ultrapassado por intermédio do recurso ao procedimento *displacement control* por assentamentos de apoio. Neste caso são impostos os deslocamentos verticais dos pontos em que originalmente estavam aplicadas as cargas (ver a Figura 11). Desta forma consegue-se obter numericamente a totalidade da resposta, como se observa na Figura 11. Para ter em conta o peso próprio da viga, foi necessário proceder a uma análise prévia, tendo sido calculados os deslocamentos dos pontos A e B da Figura 11, considerando o peso próprio da viga como único carregamento. Estes deslocamentos foram impostos na primeira combinação tendo-se seguido a sua incrementação progressiva.

Figura 11 - Relação força-deslocamento vertical a meio vão.

7.1.3 Técnica do arc-length com variable arc-length

Nesta simulação é utilizada a técnica do *arc-length*, tendo sido considerada a possibilidade de o raio do arco variar com os incrementos de carga. O parâmetro b da equação (15b) é considerado nulo. Verifica-se que, ao contrário do que ocorreu com o procedimento de controlo de força, é possível obter agora a resposta pós-pico, como se pode observar na Figura 12. Da análise desta figura verifica-se que só foi possível obter a resposta numérica

até um deslocamento vertical na zona central da viga de 0.41 mm. Na combinação em que o processo incremental foi interrompido por falta de convergência do processo iterativo foram então calculados os valores e vectores próprios da matriz de rigidez da estrutura (\underline{K}) . A existência de valores próprios quase nulos revela o facto de a matriz \underline{K} ser praticamente singular, o que justifica a dificuldade encontrada na obtenção da convergência do processo iterativo.

Figura 12 - Relação força-deslocamento vertical a meio vão.

7.1.4 Técnica do arc-length com constant arc-length

Utilizando a técnica do *arc-length* com arco de raio constante em todas as combinações e igual ao que foi calculado no primeiro incremento de carga, obteve-se uma resposta semelhante à da análise anterior, como se pode constatar observando a Figura 13. Também neste caso não foi possível obter a resposta para um deslocamento a meio vão superior a 0.41 mm. Tal como na Secção 7.1.3 o parâmetro *b* é considerado nulo.

Figura 13 - Relação força-deslocamento vertical a meio vão.

7.1.5 Procedimento displacement control at a specific variable

Na simulação em que é utilizado o procedimento *displacement control at a specific variable* o deslocamento controlado é o deslocamento vertical a meio vão da viga (ver a Figura 14). Durante o processo incremental/iterativo o valor do carregamento é adaptado de forma a respeitar o valor pretendido para o deslocamento em cada combinação. Como se pode constatar na Figura 14 foi possível obter o comportamento pré- e pós-pico com uma boa concordância em relação à simulação de Rots (1988).

Uma vez que a generalidade dos ensaios laboratoriais é controlado com base no deslocamento de um ponto da estrutura, o procedimento descrito nesta secção tem como vantagem em relação ao procedimento descrito na Secção 7.1.2. o facto de o peso próprio ser directamente incluído no vector solicitação, evitando-se assim o cálculo prévio do deslocamento devido ao peso próprio e a sua inclusão como assentamento de apoio.

Figura 14 - Relação força-deslocamento vertical a meio vão.

7.1.6 Procedimento relative displacement control between two specific variables

Com o objectivo de testar o procedimento *relative displacement control between two specific variables* no exemplo em estudo, foi efectuada uma simulação numérica com controlo da abertura do entalhe (*CMOD – Crack Mouth Opening Displacement control*). Nesta análise o carregamento da estrutura adapta-se de modo a cumprir o afastamento relativo imposto entre os pontos Q e R da face do entalhe (ver a Figura 15). Na Figura 15 está representada, para a presente simulação, a relação força-deslocamento vertical a meio vão da viga. Tal como no caso representado na Figura 14, observa-se também uma boa concordância relativamente aos resultados das simulações numéricas efectuadas por Rots (1988).

Figura 15 - Relação força-deslocamento vertical a meio vão.

7.2 Simulação numérica de um ensaio de tracção directa

Nesta secção é simulado numericamente o ensaio à tracção de um provete em circunstâncias que conduzem à ocorrência do fenómeno de *snap-back*. Pretende-se mostrar que só por intermédio da utilização da técnica iterativa que tem em conta o controlo do deslocamento relativo entre dois graus de liberdade especificados se consegue simular o referido fenómeno. Na Figura 16 está representada a malha utilizada na discretização dos provetes, que se supõem sujeitos a um estado plano de tensão. São utilizados elementos de Lagrange de 4 nós com integração de Gauss-Legendre de 2×2. Com o objectivo de caracterizar adequadamente a fendilhação na zona do entalhe, a integração de Gauss-Legendre é efectuada, nos elementos centrais, com base num padrão de 2×1 pontos (ver a Figura 16). As propriedades do betão utilizadas na simulação encontram-se indicadas na Tabela 2. Foi utilizado um critério de convergência baseado na norma do vector das forças residuais, tendo sido considerada uma tolerância de 0.01%. Neste estudo é efectuada uma comparação entre os resultados obtidos com o código computacional desenvolvido e os que se encontram publicados em Rots (1988).

Figura 16 - Ensaio de tracção: geometria, malha, carregamento e apoios.

Massa específica	$\rho = 2.4 \times 10^{-6} \text{ Kg/mm}^3$
Coeficiente de Poisson	<i>v</i> = 0.20
Módulo de Young	$E_c = 18000.0 \text{ N/mm}^2$
Resistência à compressão	$f_c = 48.0 \text{ N/mm}^2$
Resistência à tracção	$f_{ct} = 3.4 \text{ N/mm}^2$
Parâmetros do amolecimento trilinear	$\xi_1 = \frac{1}{12}; \ \alpha_1 = \frac{1}{3}; \ \xi_2 = \frac{1}{6}; \ \alpha_2 = \frac{10}{33}$
Energia de fractura	$G_f = 0.0593 \text{ N/mm}$
Parâmetro que define o modo I da energia de fractura disponível para a nova fenda	$p_1 = 2$
Factor de retenção para o corte	Exponencial com $p_2 = 2$
Banda de fendilhação	Raiz quadrada da área do elemento
Ângulo para formação de nova fenda	$\alpha_{th} = 30^{\circ}$

Tabela 2 - Propriedades do betão utilizadas nas simulações do ensaio de tracção directa.

7.2.1 Procedimento displacement control por assentamentos de apoio

Com o objectivo de efectuar a simulação com o procedimento *displacement control* por assentamentos de apoio, o carregamento indicado na Figura 16 foi substituído por um conjunto de apoios situados nos pontos de aplicação das forças. Nesses apoios são impostos deslocamentos verticais ascendentes que crescem progressivamente e constituem a única solicitação da estrutura (ver a Figura 17). Na Figura 17 representa-se a resposta tensão normal média-deslocamento do ponto P assinalado na malha. Verifica-se que ao atingir o pico a resposta cai bruscamente (do ponto A para o ponto B), não permitindo prever o fenómeno de *snap-back* que se observa na fase pós-pico. A tensão média foi calculada com a equação (51), sendo F o somatório das reacções nos apoios com deslocamentos prescritos. A área da secção transversal do provete na zona do entalhe é $50 \times 50 \text{ mm}^2$.

$$\sigma_{med} = \frac{F}{50 \times 50} \tag{51}$$

Figura 17 - Relação tensão normal média-deslocamento do ponto P.

7.2.2 Procedimento relative displacement control between two specific variables

Nesta simulação, o deslocamento vertical relativo entre os pontos Q e R (ver a Figura 18) é utilizado como parâmetro de controlo do procedimento *relative displacement control between two specific variables*. Na Figura 18 apresenta-se também a resposta tensão normal média-deslocamento do ponto P. Assim se constata que a utilização do procedimento *relative displacement control between two specific variables* permite a simulação correcta do fenómeno de *snap-back*. A tensão média foi calculada com a equação (52), sendo *p* a força distribuída (ver a Figura 18).

Figura 18 - Relação tensão normal média-deslocamento do ponto P.

8 CONCLUSÕES

A simulação numérica de estruturas com comportamento não linear material apresenta, por vezes, dificuldades associadas à obtenção da resposta para determinados níveis de solicitação. Estas dificuldades numéricas são agravadas sempre que ocorram fenómenos

tais como o *snap*-back ou o *snap-through*. Com o objectivo de melhorar a qualidade das simulações numéricas efectuadas com o programa de elementos finitos FEMIX foram nele implementadas as seguintes funcionalidades:

- técnica do arc-length;
- deslocamento controlado num grau de liberdade;
- deslocamento relativo controlado por dois graus de liberdade.

Efectuaram-se algumas simulações numéricas com o objectivo de testar e avaliar a eficiência das técnicas implementadas. Com base nestas simulações verificou-se que as técnicas implementadas melhoraram significativamente a qualidade das simulações em que ocorrem fenómenos de *snap-back* ou de *snap-through*.

REFERÊNCIAS

Azevedo, A. F. M; Barros, J. A. O.; Sena-Cruz, J.; Ventura-Gouveia, A. (2003). "Software no Ensino e no Projecto de Estruturas", *III Congresso Luso-Moçambicano de Engenharia*, Eds. J.S. Gomes, C.F. Afonso, C.C. António e A.S. Matos, volume I, pp. 81-92, Maputo, Moçambique, 19 a 21 de Agosto.

URL: http://civil.fe.up.pt/pub/people/alvaro/pdf/2003_Mocamb_Soft_Ens_Proj_Estrut.pdf

Bashir-Ahmed, M. and Xiao-zu, S. (2004). "Arc-length technique for nonlinear finite element analysis." *Journal of Zhejiang University SCIENCE*, 5(5), 618-628.

Batoz, J.L. and Dhatt, G. (1979). "Incremental displacement algorithms for nonlinear problems." Int. J. Num. Methods Engrg., 14, p. 1262-1267.

Crisfield, M.A. (1991). "Non-linear finite element analysis of solids and structures. Volume 1: essentials." *John Wiley & Sons*, Chichester, England.

Crisfield, M.A. (1986). "Snap-through and snap-back response in concrete structures and the dangers of under-integration." *International Journal for Numerical Methods in Engineering*, 229, 751-767.

Crisfield, M.A. (1983). "An arc-length method including line searches and accelerations." *International Journal for Numerical Methods in Engineering*, 19, 1269-1289.

de Borst, R. (1986). "Non-linear analysis of frictional materials." *Dissertation*, Delft University of Technology.

Póvoas, R.H.C.F. (1991). "Modelos não-lineares de análise e dimensionamento de estruturas laminares de betão incluindo efeitos diferidos." *Tese de Doutoramento*, Faculdade de Engenharia da Universidade do Porto.

RILEM (1985). "Determination of the fracture energy of mortar and concrete by means of three-point bending tests on notched beams. Draft Recommendation, 50-FMC Committee Fracture Mechanics of Concrete." Materials and Structures, 85(85), 285-290.

Riks, E. (1970). "On the numerical solution of snapping problems in the theory of elastic stability". *Dissertation*, Stanford University, Stanford, California, USA.

Rots, J.G. (1988). "Computational Modeling of Concrete Fracture." *PhD Thesis*, Delft Univ. of Tech.

Sena-Cruz, J.M. (2004). "Strengthening of concrete structures with near-surface mounted CFRP laminate strips." *PhD Thesis*, Department of Civil Engineering, University of Minho.

URL: http://www.civil.uminho.pt/composites/Publications/2004/PhD2004_001_JSenaCruz.pdf

Sena-Cruz, J.M.; Barros, J.A.O.; Azevedo, A.F.M.. (2004). "Elasto-plastic multi-fixed smeared crack model for concrete." *Technical report 04-DEC/E-05*, Department of Civil Engineering, University of Minho, 70 pp.

URL: http://www.civil.uminho.pt/composites/Publications/2004/TR2004_001_04-DEC-E-05.pdf

Wempner, G.A. (1971). "Discrete approximations related to nonlinear theories of solids." *Int. J. Solids & Structures*, 7, 1581-1599.

Zienkiewicz, O.C. and Taylor, R.L. (1989). "The finite element method (Fourth edition) Volume 1, Basic formulation and linear problems." *McGraw-Hill*, Berkshire, England.

Zienkiewicz, O.C. and Taylor, R.L. (1991). "The finite element method (Fourth edition) Volume 2, Solid and fluid mechanics, dynamics and non-linearity." *McGraw-Hill*, Berkshire, England.

ANEXO I: PROCEDIMENTO DESTINADO À DETERMINAÇÃO DE $\delta \lambda^q$

Neste anexo apresenta-se a dedução da equação (31) que permite a determinação de $\delta \lambda^q$.

Substituindo na equação (29) a equação (24) obtém-se

$$\Delta \underline{a}_{n}^{q} = \sum_{i=1}^{q} \delta \underline{a}_{n}^{i} = \Delta \underline{a}_{n}^{q-1} + \delta \underline{a}_{n}^{q} = \Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1} + \delta \lambda^{q} \delta \overline{\underline{\overline{a}}}_{n}^{q-1}$$
(53)

Elevando ao quadrado ambos os membros da equação (30) resulta

$$\left(\lambda^{q}\right)^{2} = \left(\lambda^{q-1} + \delta\lambda^{q}\right)^{2} = \left(\lambda^{q-1}\right)^{2} + 2\lambda^{q-1}\delta\lambda^{q} + \left(\delta\lambda^{q}\right)^{2}$$
(54)

O produto $\left[\Delta a_n^q\right]^T \Delta a_n^q$ é em seguida desenvolvido tendo em conta a equação (53), resultando

$$\begin{split} \left[\Delta \underline{a}_{n}^{q}\right]^{T} \Delta \underline{a}_{n}^{q} &= \Delta \underline{a}_{n}^{q} |\Delta \underline{a}_{n}^{q} \\ &= \left(\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1} + \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1}\right) \left[\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1} + \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1}\right) \\ &= \left(\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1} + \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1}\right) \left[\delta \underline{a}_{n}^{q-1} + + \left(\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1} + \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1}\right)\right] \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1} \\ &+ \left(\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1} + \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1}\right) \left[\delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1} + + \left(\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1}\right) \left[\delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1} + \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1}\right] \\ &= \Delta \underline{a}_{n}^{q-1} \left|\delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1}\right| \Delta \underline{a}_{n}^{q-1} + \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1} \right] \delta \underline{a}_{n}^{q-1} + \\ &+ \Delta \underline{a}_{n}^{q-1} \left|\delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1}\right| \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1} + \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1} \right] \\ &= \left[\Delta \underline{a}_{n}^{q-1}\right]^{T} \Delta \underline{a}_{n}^{q-1} + \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \Delta \underline{a}_{n}^{q-1} + \left[\delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \Delta \underline{a}_{n}^{q-1} + \\ &+ \left(\Delta \underline{a}_{n}^{q-1}\right]^{T} \delta \overline{a}_{n}^{q-1} + \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1} + \\ &+ \left[\Delta \underline{a}_{n}^{q-1}\right]^{T} \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1} + \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1} + \\ &+ \left[\Delta \underline{a}_{n}^{q-1}\right]^{T} \delta \overline{a}_{n}^{q-1} + \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \delta \lambda^{q} \delta \overline{\underline{a}}_{n}^{q-1} + \\ &+ \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \delta \overline{\underline{a}}_{n}^{q-1} + \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \delta \overline{\underline{a}}_{n}^{q-1} + \\ &+ \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \delta \underline{a}_{n}^{q-1} + \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \delta \overline{\underline{a}}_{n}^{q-1} + \\ &+ \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \delta \underline{a}_{n}^{q-1} + \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \delta \underline{a}_{n}^{q-1} + \\ &+ \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \delta \underline{a}_{n}^{$$

Substituindo na equação (15b), as equações (54) e (55) obtém-se

$$\begin{bmatrix} \delta \overline{\underline{a}}_{n}^{q-1} \end{bmatrix}^{T} \delta \overline{\underline{a}}_{n}^{q-1} \left(\delta \lambda^{q} \right)^{2} + \begin{bmatrix} 2 \begin{bmatrix} \delta \overline{\underline{a}}_{n}^{q-1} \end{bmatrix}^{T} \left(\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1} \right) \end{bmatrix} \delta \lambda^{q} + \\ + \begin{bmatrix} \Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1} \end{bmatrix}^{T} \left(\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1} \right) + \\ + b^{2} \begin{bmatrix} \left(\lambda^{q-1} \right)^{2} + 2\lambda^{q-1} \delta \lambda^{q} + \left(\delta \lambda^{q} \right)^{2} \end{bmatrix} \begin{bmatrix} \Delta \underline{F} \end{bmatrix}^{T} \Delta \underline{F} - \Delta L^{2} = 0 \end{aligned}$$
(56)

ou

$$\left(\left[\delta \underline{\overline{a}}_{n}^{q-1}\right]^{T} \delta \underline{\overline{a}}_{n}^{q-1} + b^{2} \left[\Delta \underline{F}\right]^{T} \Delta \underline{F}\right) \left(\delta \lambda^{q}\right)^{2} + \left[2\left[\delta \underline{\overline{a}}_{n}^{q-1}\right]^{T} \left(\Delta \underline{a}_{n}^{q-1} + \delta \underline{\overline{a}}_{n}^{q-1}\right) + 2b^{2} \lambda^{q-1} \left[\Delta \underline{F}\right]^{T} \Delta \underline{F}\right] \delta \lambda^{q} + \left[\Delta \underline{a}_{n}^{q-1} + \delta \underline{\overline{a}}_{n}^{q-1}\right]^{T} \left(\Delta \underline{a}_{n}^{q-1} + \delta \underline{\overline{a}}_{n}^{q-1}\right) + b^{2} \left(\lambda^{q-1}\right)^{2} \left[\Delta \underline{F}\right]^{T} \Delta \underline{F} - \Delta L^{2} = 0$$
(57)

A equação (57) pode-se escrever da seguinte forma

$$a_1\left(\delta\lambda^q\right)^2 + a_2\delta\lambda^q + a_3 = 0 \tag{58a}$$

com

$$a_{1} = \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \delta \overline{\underline{a}}_{n}^{q-1} + b^{2} \left[\Delta \underline{F}\right]^{T} \Delta \underline{F}$$

$$a_{2} = 2 \left[\delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \left(\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1}\right) + 2b^{2} \lambda^{q-1} \left[\Delta \underline{F}\right]^{T} \Delta \underline{F}$$

$$a_{3} = \left[\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1}\right]^{T} \left(\Delta \underline{a}_{n}^{q-1} + \delta \overline{\underline{a}}_{n}^{q-1}\right) + b^{2} \left(\lambda^{q-1}\right)^{2} \left[\Delta \underline{F}\right]^{T} \Delta \underline{F} - \Delta L^{2}$$
(58b)

ANEXO II: RESOLUÇÃO DO SISTEMA DE EQUAÇÕES

Neste anexo são desenvolvidas as equações relacionadas com o sistema de equações de equilíbrio relativo a uma iteração de uma determinada combinação, nas circunstâncias correspondentes à utilização da técnica do *arc-length*. É considerada uma separação entre os graus de liberdade livres (*free* – índice *F*) e os graus de liberdade prescritos (*prescribed* - índice *P*). Nestas circunstâncias e com base na equação (23) tem-se

$$\begin{bmatrix} \underline{K}_{FF} & \underline{K}_{FP} \\ \underline{K}_{PF} & \underline{K}_{PP} \end{bmatrix} \begin{cases} \delta \underline{a}_{F} \\ \delta \underline{a}_{P} \end{cases} = \begin{cases} \underline{\Psi}_{F} \\ \underline{\Psi}_{P} + \delta \underline{R}_{P} \end{cases} + \begin{cases} \Delta \underline{F}_{F} \\ \Delta \underline{F}_{P} \end{cases} \delta \lambda$$
(59)

Esta equação corresponde à iteração q da combinação n.

Desenvolvendo (59) obtém-se,

$$\underline{K}_{FF}\delta\underline{a}_{F} + \underline{K}_{FP}\delta\underline{a}_{P} = \underline{\Psi}_{F} + \delta\lambda\Delta\underline{F}_{F}$$

$$\underline{K}_{PF}\delta\underline{a}_{F} + \underline{K}_{PP}\delta\underline{a}_{P} = \underline{\Psi}_{P} + \delta\underline{R}_{P} + \delta\lambda\Delta\underline{F}_{P}$$
(60)

Explicitando $\delta \underline{a}_F$ e $\delta \underline{R}_P$ resulta

$$\delta \underline{a}_{F} = \left[\underline{K}_{FF}\right]^{-1} \left(\underline{\Psi}_{F} - \underline{K}_{FP} \delta \underline{a}_{P} + \delta \lambda \Delta \underline{F}_{F}\right) = \left[\underline{K}_{FF}\right]^{-1} \left(\underline{\Psi}_{F} - \underline{K}_{FP} \delta \underline{a}_{P}\right) + \delta \lambda \left[\underline{K}_{FF}\right]^{-1} \Delta \underline{F}_{F} = \delta \underline{\overline{a}}_{F} + \delta \lambda \delta \underline{\overline{a}}_{F}$$
(61)

$$\delta \underline{R}_{P} = \underline{K}_{PF} \delta \underline{a}_{F} + \underline{K}_{PP} \delta \underline{a}_{P} - \underline{\Psi}_{P} - \delta \lambda \Delta \underline{F}_{P}$$
(62)

Nestas equações as únicas incógnitas são os deslocamentos iterativos nos graus de liberdade do tipo F, $\delta \underline{a}_F$, e as reacções iterativas nos graus de liberdade do tipo P, $\delta \underline{R}_P$.

ANEXO III: FICHEIRO DE DADOS – BLOCOS RELATIVOS AO ARC-LENGTH

Na Tabela 3 apresentam-se os parâmetros que podem estar presentes no bloco <MAIN_PARAMETERS> e que se destinam a activar a técnica do *arc-length* e alguns métodos relacionados. Nas tabelas 4, 5 e 6 apresentam-se os diversos parâmetros que é possível incluir no bloco <ARC_LENGTH_PARAMETERS> com o objectivo de definir os dados relativos às diversas técnicas iterativas.

Tabela 3 – Parâmetros a acrescentar ao bloco <MAIN_PARAMETERS> para activar e configurar a técnica do *arc-length*.

ARC_LENGTH = _Y ; MAXIMUM_NUMBER_OF_ARC_LENGTH_COMBINATIONS = 200 ;

Nota: ARC_LENGTH – quando activada, a técnica do *arc-length* é introduzida na última combinação do ficheiro de dados e mantida até se atingir o MAXIMUM_NUMBER_OF_ARC_LENGTH_COMBINATIONS; MAXIMUM_NUMBER_OF_ARC_LENGTH_COMBINATIONS – número máximo de combinações com a

técnica do *arc-length* (parâmetro n_A descrito na Secção 6).

Tabela 4 – Bloco <ARC_LENGTH_PARAMETERS>: *arc-length* com valores por defeito.

```
<ARC_LENGTH_PARAMETERS>
</ARC_LENGTH_PARAMETERS>
Default values:
    CONSTANT_RADIUS = _N ;
    RADIUS_FACTOR = 1.0 ;
    LOAD_FACTOR = 1.0 ;
    FORCE_DISPLACEMENT_SCALING_FACTOR = 0.0 ;
    MOMENT_ROTATION_SCALING_FACTOR = 0.0 ;
```

Tabela 5 – Bloco <ARC_LENGTH_PARAMETERS>: exemplos de conjunto de parâmetros.

<arc_length_parameters></arc_length_parameters>
CONSTANT_RADIUS = _N ;
$LOAD_FACTOR = 1.25$;
<pre>FORCE_DISPLACEMENT_SCALING_FACTOR = 0.09 ;</pre>
<pre>MOMENT_ROTATION_SCALING_FACTOR = 0.09 ;</pre>

Nota: $CONSTANT_RADIUS$ – quando activada, o escalar ΔL é mantido constante em todo o processo incremental/iterativo, sendo o seu valor calculado no primeiro incremento com *arc-length* (ver a Secção 2);

RADIUS_FACTOR – parâmetro β que afecta o escalar ΔL (ver a Secção 5);

LOAD_FACTOR – parâmetro α que afecta o vector $\Delta \underline{F}$ (ver a Secção 5);

FORCE_DISPLACEMENT_SCALING_FACTOR e MOMENT_ROTATION_SCALING_FACTOR - factor de escala b (ver a equação (10)).

Tabela 6 – Bloco <arc_length_parameters>: parâmetros relativos aos procedimentos</arc_length_parameters>
deslocamento controlado num grau de liberdade e deslocamento relativo controlado por dois graus de
liberdade.

<arc_length_parameters></arc_length_parameters>	<arc_length_parameters></arc_length_parameters>
DISPLACEMENT_CONTROL = _Y ;	RELATIVE_DISPLACEMENT_CONTROL = _Y ;
POINT_NUMBER = 313 ;	POINT_A_NUMBER = 146 ;
<pre>DEGREE_OF_FREEDOM = _D3 ;</pre>	POINT_B_NUMBER = 171 ;
DISPLACEMENT_INCREMENT = 0.0001 ;	<pre>DEGREE_OF_FREEDOM = _D3 ;</pre>
	RELATIVE_DISPLACEMENT_INCREMENT = -0.0001 ;

Nota: DISPLACEMENT_CONTROL – deslocamento controlado num grau de liberdade (ver a Secção 3);

POINT_NUMBER – ponto nodal da estrutura onde o deslocamento é controlado (ver a equação (38));

DEGREE_OF_FREEDOM – grau de liberdade controlado (ver a equação (38));

DISPLACEMENT_INCREMENT – magnitude incremental predefinida Δa_i (ver a equação (38));

RELATIVE_DISPLACEMENT_CONTROL – deslocamento relativo controlado por dois graus de liberdade (ver a Secção 4);

POINT_A_NUMBER e POINT_B_NUMBER – pontos nodais da estrutura onde o deslocamento relativo vai ser controlado (ver a equação (42));

DEGREE_OF_FREEDOM – grau de liberdade controlado (ver a equação (42));

RELATIVE_DISPLACEMENT_INCREMENT – magnitude incremental predefinida Δa_{j-i} (ver a equação (42)).