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Summary. The simulation of the dynamic behavior of a structure subjected to sets of moving
loads originated by vehicles whose structural behavior is also considered corresponds to a
task not efficiently addressed by standard finite element packages. The capability of solving
this type of problems has been introduced in the FEMIX 4.0 computational code by means of
an integrated formulation, which includes equilibrium and compatibility equations, with
unknowns that consist on displacements and interaction forces. Each system of linear
equations is efficiently solved by considering the characteristics of each submatrix of the
coefficient matrix.
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1. INTRODUCTION

The finite element simulation of the dynamic effects of moving loads on structures such as
bridges can be performed with or without the consideration of the vehicle's own structure.
When this is not taken into consideration only a set of moving loads has to be included in the
structural model of the bridge. The simulation of the vehicle-structure requires the
consideration of several independent meshes and their compatibilization in contact points.
This compatibilization may require a connection between two nodal points, between a nodal
point and a surface point or between two surface points. The first situation is simply a
master/slave relationship between two degrees of freedom of the finite element mesh. The
second situation requires the compatibilization of a nodal degree of freedom with the
displacements of a point that is located in the surface of the finite element. These techniques
have been implemented in FEMIX 4.0, which is a general purpose finite element computer
program [1]. The third situation is not treated here.

The dynamic analysis of a structure can be performed by direct integration of the dynamic
equilibrium equations by means of one of the classical time history methods (e.g., Newmark
method, Wilson-0 method). A slight improvement of the Newmark method was proposed
in [2]. This new algorithm is termed Hilber-Hughes-Taylor (HHT) method or alpha-method,
and is adopted in the present work.

This paper describes the formulation of the contact between nodal points of the vehicle and
internal points of a finite element. In each time step a linear behavior is assumed. Dynamic
equilibrium equations in non prescribed degrees of freedom, in contact degrees of freedom
and in prescribed degrees of freedom are separately developed. Contact compatibility
equations between points of the vehicle and internal points of a finite element are also
separately developed. All these equations constitute a single system of linear equations
involving displacements, contact forces and reactions as unknowns. After the solution of this
system of linear equations the displacements, velocities and accelerations at the current time
step can be calculated and a new time step is started. This heterogeneous system of linear
equations can be efficiently solved by means of the consideration of several submatrices with
specific characteristics.

A numerical application is presented to validate the formulation described in this paper.

2. FEMIX COMPUTER CODE

The HHT method has been implemented in the FEMIX 4.0 computer code [1], whose purpose
is the analysis of structures by the Finite Element Method (FEM). This code is based on the
displacement method, being a large library of types of finite elements already available,
namely 3D frames and trusses, plane stress elements, flat or curved elements for shells, and
3D solid elements. Linear elements may have two or three nodes, plane stress and shell
elements may be 4, 8 or 9-noded and 8 or 20 noded hexahedra may be used in 3D solid
analyses. This element library is complemented with a set of point, line and surface springs
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that model elastic contact with the supports, and also a few types of interface elements to
model inter-element contact. Embedded line elements can be added to other types of elements
in order to model reinforcement bars. All these types of elements can be simultaneously
included in the same analysis, with the exception of some incompatible combinations. The
analysis may be static or dynamic and the material behavior may be linear or nonlinear. Data
input is facilitated by the possibility of importing CAD models. Post processing is performed
with a general purpose scientific visualization program named drawmesh [1].

Advanced numerical techniques are available, such as the Newton-Raphson method combined
with arc-length techniques and path dependent or independent algorithms. When the size of
the systems of linear equations is very large, a preconditioned conjugate gradient method can
be advantageously used.

In the context of the dynamic analysis of structures with moving loads and vehicle-structure
interaction the behavior of the materials is considered linear and the displacements are
assumed to be small enough to avoid geometrically nonlinear phenomena.

The following section provides a detailed description of the formulation of the HHT method
in the context of a dynamic analysis with vehicle-structure interaction.

3. HHT METHOD WITH VEHICLE-STRUCTURE INTERACTION

A simple example is used to introduce the types of degrees of freedom that are considered in
the formulation of the vehicle-structure interaction in the context of a time step of the HHT
method (see Figure 1). On the right, a simply supported beam with two spans (B1 and B2) is
subjected to the contact of a vehicle, shown on the left. The structure of the vehicle is also
composed of two beams (B3 and B4). Nodes 7, 8 and 9 are internal points of the beam BI.
The location of these nodes may change between time steps, depending on the position of the
vehicle. Eventual gaps between both structures (g;) can be easily considered in the
compatibility equations, as will be shown later.

D8 @ O 1 @ 6O 2 [

B3 B4 B1 B2

Figure 1. Vehicle and structure: beams and nodal points.

In each nodal point two degrees of freedom are considered (vertical displacement and
rotation). Figure 2 shows the generalized displacements in nodal points (1 to 12), the
generalized displacements of the contact points of the structure (13, 14 and 15), the
interaction forces in the vehicle (X7, X9 and X);) and the interaction forces in the structure
(Y13, Y14 and Y;s5). The interaction only involves the translational degrees of freedom.



Alvaro Azevedo, Sérgio Neves and Rui Calgada

Degelde e ] 1 17 s
B B

Figure 2. Vehicle and structure: degrees of freedom and interactions forces.

The following classification of the degrees of freedom is considered:

F — free;

X — interaction (vehicle);
P — prescribed;

Y — interaction (structure).

This classification is used later in this section.
In the context of the HHT method, the dynamic equilibrium equation that involves the
degrees of freedom in nodal points (1 to 12) is the following

Mii‘+(1+a)Ci ~aCi" +(1+a)Ku ~a Ku" =(1+a) F* —aF" M

In this equation M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F are
the applied generalized forces, u are the generalized displacements and « is the main
parameter of the HHT method. When a=0 the HHT method reduces to the Newmark
method, and for other values of the parameter «, numerical energy dissipation is introduced in
the higher modes. The superscript ¢ indicates the current time step (#+ Ar) and the
superscript p indicates the previous one (¢ ).

According to Figure 2 and to the classification indicated above, the F type degrees of freedom
are the following: 2, 4, 6, 8, 10 and 12. The X type degrees of freedom correspond to the
"supports" of the separated vehicle-structure, being the following: 7, 9 and 11. The P type
degrees of freedom are the main structural supports 1, 3 and 5. The Y type degrees of freedom
13, 14 and 15 consist on the internal displacements of beam B1 at the contact points.
According to this classification of degrees of freedom, Eq. (1) can be expanded by
considering several submatrices, yielding
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.c 2
My My Mpp ||ty @

Cor Crix Cp 2; Cor Coix Cpp 21{"}
+(1+0c) Cv Cu Culliy|-a|Cx Cy Cuplltiy
Crr Cpx Cpp Z; Crr Chpy QPP_ _Q}I:_
K Kiey Kpp ﬂ; Ko Ky KFP_ 21{:
+(1+a) Ky Ky Ky L_‘)c( —o| Ky Ky Ky ﬂ),; =
Ko Kpy Kpp _Z; Ko Koy Kpp _%f ]
P;+d,, Y5 Pl+d, Y] ]
(I+a)| Py+Ly Xy |-a| PP+Ly, X}
Pitd, Vi+R:| | Pi+d, Y] +RY|

In the F' type degrees of freedom,
Fr=Pr+d; Y, G)

being P the external loads applied in correspondence with each degree of freedom. Each
component dj of dry corresponds to the nodal force in the F type degree of freedom i, which
is equivalent to a single load consisting of a unitary value of Y; (see Figure 2).

In the X type degrees of freedom,

EX = BX +l)o{ XX )

being Ixy the identity matrix with an appropriate size.
In the P type degrees of freedom,

EP = £P+dPY XY +£p (5)

being Rp the reactions.
According to Figure 2, equilibrium equations in the contact degrees of freedom can be
written, yielding

Yy=—Xy ©

Since the number of Y type degrees of freedom coincides with the number of X type degrees
of freedom, the subscript ¥ may be replaced with X.
Eq. (6) is then substituted into Eq. (2), leading to
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..c 7
My Mp Mpp ||ty M

Crr Cry Cpp Z; Cir Cry Cpp %5
+ (1 + (x) Cv Cu Culliy|-a|Cy Cu Cullty
Crr Cpx Cpp Q; Cor Cor Cpp _l;'l]];_
K Kiy Kpp ﬂ; Ko Kpx EFP_ %5
+ (l + (x) Ky Ky Ky ﬂ)cr —a| Ky Ky Ky Z)[; =
Ko Kpy Kpp _ﬂ; Ko Koy Kpp _%5_
Py P d oy d x 0 0
(l+a)| Py |—a| Py |+(+a)| Ly |Xi-a| Ly |XEP+(+a)| O |-a| O
B; 1_)1I>j - dPX - dpx B; lej
Eq. (7) is equivalent to the following three equations
M i+ M gy i’y + M i, ®)

+(14+a) Cpp iy +(14a) Cpy it +(14+a) Cpp g
—0Ctip—aCptiy—aCpiiy
+(1+a) Ky up+(1+0) Ky uy +(14+0) K pp
~aKpyug —aKpouy—aKpup =

(l+a)£;_a££_(l+a)dm K)C("'ain( K}?

M i+ M gy i’y + M i, ©
+(1+0)Cyp tif +(1+0) C oty +(1+0) C oyt
—aCyptif—aCy il —aCy i)
+(1+0) K ypoup+(1+0) K g uy +(1+a) K poup
—oKyul—aKyuy—aKpul =

(1+a) Py —aPy+(1+0) oy Xy —aly Xy
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- C . C s C 10
Mpptip+Mpy iy + M ppiip (10)

+(1+0) Cpp st +(14a) Cpy tiy +(1+a) Cpp g
—aCpptif—aCpypiif —aCppii]
+(1+0) Kpp uf +(140) Ko e + (14 0) K pp i
—aKppup—aKpouy—aKpyup=
(+a)Pi—aPp—(1+a)d, X5 +ad, X{+(+a)R;-aR]

By placing all terms containing unknown variables in the first member, Eq.s (8) and (9) result
in

Mg+ Mgy iy +(140) Cpp s + (14 a) Cpy iy (b
(o) K up+(1+0) Ky uy +(+0)d,y X5 =

(I+a) Py —a Pl +ad. X} —M iy
~(1+0)Cptip+aCpptif +aCpptiy +a Cppiif

_(1+a)KFP uptaKppuptaKpcuy+aKpup

M i + M i +(1+a) C ot +(140) C oyt (12)

+(l+a)KXF Z; +(l+a)KXX Ej{ _(I'HZ)lxx X)C( =
(I+a)Py—aPy—aly X{—M i,
_(1+a)QXP Q;"'agﬁ Z£ +aCy Z; +aCy 211;

_(1+a)KXP Z;"‘GKXF %5 +a Ky Z§ +a Ky, Z}f

After the solution of the system of linear equations only the current reactions remain
unknown. These can be calculated with the following equation

¢ ¢ c (13)
Ry ZLB}I:_BP"'LB;ZJ"QPX KX_LQPX Xy
l+a I+a l+a

l “C 1 e C l e C
t—Mpptip+——Mpytiy +—— M ol
l+a l+a I+a

. c . c . c o - p a - p o - p
ACprthp +Cpythy +Cppthp =———Cpptly ———Cpptiy ———Cpptip
I+a l+a I+a

c c c a P o p a P
+KPFZF+KPXZX+£PPZP_I+ KPFZF_I_I_ Koy uy— aKPPZP

which is equivalent to Eq. (10).
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Eq. (11) can be written as

M i+ M gy iy + (14 0) C ot +(140) C i (14)

+(1+a)KFF Up +(1+a)£F){ Uy +(1+a)dFX Xy :EF

being EF defined by

F, :(I'HX)E; —aPptody Xy-Mpii, (s)
_(l+a)gFP up+aCprtip+aCptiy +aCppiiy

~(+a)Kpup+aKyul +aKpul+akeu)

According to the Newmark method, the velocity and the displacement in the F type degrees of
freedom, at the current time step (¢ + At ), can be defined as [3]

g =l +[1=y)iil +yii | ar (16)

(17

i =t i (3 Jat e g o

These equations are also used in the HHT method. The parameter y defines a linear weighting
between the influence of the initial and final accelerations on the velocity variation and the
parameter § defines a similar weighting of the accelerations on the displacement variation.
These parameters influence the stability and accuracy of the HHT method.

Solving Eq. (17) for i, gives

(18)
oo 1 1. (L—ljéé’

= up — up———ug; —
par =" parr =" gt 28

Substituting i, given by Eq. (18) into Eq. (16) yields

i =ul +(1—yp)iil At+y oo Lo L [ L )i |a )
ZF =F =F ﬁAtZ_F ﬂAtz_F ﬂAt_F Zﬂ =F

This equation can be rewritten as

e _ VeV pep Y 7
Up=——Up ———Up+Up | 1= |+ At|]l-y———+
Up ﬂAt_F pAL T _F( ﬁj Up { 4 28 V}

(20)

which is equivalent to
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2D
iy = lup w1 g A 1= i
PAt PAt S 2p

By replacing F with X in Eq.s (16) and (17), and performing a similar rearrangement, one has,
by analogy with Eq.s (18) and (21),

ge_ Lo U, 1, (1 (22)
=A™ opar ™ pae = \2p )T

s = ut -yt =Ll A 1-L i

T pAe pAt p 2p

The substitution of Eq.s (18), (21), (22) and (23) into Eq. (14) yields
Mo | et bzttt -

b | s ittt

)| foni -t o1-2 a1 0t

+(1+a)gm[ A —— u"+(1—%jg;+m(1—$ z;}

Bt par

+(l+a)KFF L_‘; +(l+a)£m E)C( +(l+a)dFX K)C( ZEF

Rearranging this equation one has
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(25)

M (4 a)Cp L (14 0) K |
BAt BAt

c

1 ¢
+|:FMFX +(1+a)QFX ﬁ"'(l"'a)gm}ﬂx +(1+0‘)de XX

— 1 I . 1 ..
EF+MFF|:WE£+EEI€+(§_IJZ£:|
1 1 1
Moy | ——u? b ——i? | ——1]ii”
_FX|:ﬂAt2_X ,BAt_X [2ﬂ j_x}
-%Luﬁgﬁ{ﬁ;zﬁ+(ﬁ—qz£+A{é%—lgﬁ}

A EAN A A
BAt B 2B

which is equivalent to the following compact form
(26)

KFFZ; +KFXE; +(l+a)c_ZFX X;( :EF

being
KFF =AM +(l+a) 4,C +(1+ Q)KFF @7
K,y = AM +(1+0‘) 4,Cy +(1+0‘)ng
= — » . p . p » . p - p (28)
Fr=Fy+Mp [Ao up+ A4, up + 4 ZF]+MFX [Ao Uy + Ay thy + 4, ZX]
S+ 0) Cpp [ uf + A i+ Agii [ (4 a) oy [ g+ 4]+ 4, 7]
1 1 (29)
= —— 4 =-1 Ay=—o
PAt PAL PAt
4L 4 =2 a=nl 21
3 zﬂ 4 5 - 2ﬁ

Eq. (12) can be rearranged yielding

10
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M iy + M iy +(1+0) C ot +(1+a) C oy iy (39)

+(l+a)KXF Up +(l+a)KXX Uy _(l+a)£xx Xy =F,
being F « defined by

Ey=(+a)Py~aPf~aly X{~Myii D
_(l+a)QXP p+oCyptip+aCytiy+aCyptip

_(1+a)KXP Z;"‘aKXF Z£+OCKXX 2§ +a Ky sz

The substitution of Eq.s (18), (21), (22) and (23) into Eq. (30) yields

M ! U, — ! ur — ! ur — L—1 i .
A T oA Tt opae " \2p )T

Rearranging this equation yields

11
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(33)

1 ¢
|:WMXF +(l+a)gXF ﬁ"'(l"'a)g)m}ﬂp

—'{ﬁAltz M}cx"'(l"'a)(_j)cx ﬁzt+(l+a)gxx:|li§(—(l+a)lm X)C(:
— 1 1 1
F,.+M —uflr—ul | ——11i?
Ly _XF|:ﬁAt2 Urp ﬁAl‘_F [2ﬁ j_F:|

1 1 1
My | ——ul+—al 4| ——1]ii?
_X)(|:ﬁAt2_X ,BAt_X {2ﬂ j_x}

+(1+a)C,y {Lzﬁ{l—l}zﬁw(l—l 4
AL I 28

+(1+a)C {Lg§+[l—ljg{§+m[
PAL B

which is equivalent to the following compact form

- c - c c = 34
Kypup +K uy _(l+a)£xx Xy=Fy 34

being
KXF =AM - + (1+a) A4,C +(1+a)£XF (35)
K= A4M o +(1+a) AC  +(1+a)K

X ZEX +M i [Ao 21{: +4, Qﬁ{) + 4, 2£]+MXX [Ao Z)’; +4, Z)I; + 4, Zg] (36)

(1+0)Co [ ul + 4, il + 4, il |+ (@) Cop |4 ul + 4, 07 + 4, ii? ]

[~

+

The parameters 4y to As are defined by Eq. (29).
In matrix notation, Eq.s (26) and (34) become

(37

=l
~

— — u
|:£FF gpx (1 + oc) d y } ;f
KXF KXX _(l+a)£XX

.
B O
[~ ]
<

In all the interaction degrees of freedom, and for the current time step (¢ + At), a compatibility
equation is required. The subtraction between a displacement of the vehicle and the

12
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corresponding displacement of the structure must be equal to the gap g; (see Figures 1 and 2).
This compatibility equation can be written as

c c c 8
uy—u; =g G8)

being

c _ c c c 39
ZY—QYFZF+§YPZP+ZYYXY (39)

In this equation, each component c; of cyr corresponds to the displacement in the Y type
degree of freedom i for a single unit displacement in the F type degree of freedom j (see
Figure 2). The components of matrix cyr have a similar meaning. Each component f; of fyy
corresponds to the displacement in the Y type degree of freedom i for a single load consisting
of a unitary force on the Y type degree of freedom j (see Figure 2). All the components of the
matrix fyy are calculated assuming null generalized displacements in the F type and P type
degrees of freedom. When the finite elements are based on the beam theory the fyy matrix is
not null. In finite elements whose formulation is based on shape functions the fyy matrix is
null.

Since the number of Y type degrees of freedom coincides with the number of X type degrees
of freedom, the subscript ¥ may be replaced with X. Substituting Eq. (6) into Eq. (39), yields

Uy = Cope Up +Cop Up _J_[XX Xy (“40)
Substituting Eq. (40) into Eq. (38) gives
—cpuptuy+f  Xi=gl+epup “h
Multiplying both members of Eq. (41) by the constant — (1 + a) results in
(+a)cyup—(+a)uy —(+a) f X5 =-(1+a)gt —(1+a)cyy u; (“42)
Rewriting Eq.s (37) and (42) in matrix form leads to
— — . = 43
K pr Ky (1 + a) d py Z; §F )
K}(F K}(x _(1+a)l)()( Ii)c( = EX
(1+a)£XF _(1+a)lxx _(l+a)£XX X} gX
being
(44)

g =—(+a)gt ~(1+a)cyu;

13
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It is possible to demonstrate that in Eq. (43) the coefficient matrix of the system of linear
equations is symmetric.

4. NUMERICAL EXAMPLE

In order to validate the proposed formulation, a simply supported beam subjected to a moving
sprung mass is analyzed. This example is solved by the present direct method and by an
iterative method proposed in [4] and [5]. The obtained results are also compared with those
published in [6] and [7].

Figure 3 shows a simply supported beam subjected to a moving sprung mass. The properties
of the simply supported beam coincide with those used by Yang and Wu [8], being the span
L =25.0m and its geometrical and mechanical properties the following: Young’s modulus
E =2.87 GPa, Poisson’s ratio » = 0.2, moment of inertia /= 2.90 m* and mass per unit length
m = 2303 kg/m. The beam is divided in 50 finite elements.

The sprung mass is modeled with two vertical beams. The upper beam simulates the mass
M;=5750 kg and the lower beam simulates the stiffness k = 1595%10° N/m of the vehicle.
The constant velocity of the sprung mass is v = 100 km/h, its frequency is f, = 2.65 Hz and its
mass ratio M/(mL) is 0.1. The damping effects of the bridge and vehicle are considered to be
negligible.

In the numerical integration by the HHT method the following parameters are considered:
At=10.005 s, f =0.25, y=0.50 and a = 0. The total number of time steps is 180.

M -~
s v
k

25.0

Figure 3. Simply supported beam subjected to a moving sprung mass.

The dynamic response of the beam subjected to the moving sprung mass, in terms of
displacement and acceleration at the midpoint, is plotted in Figure 4.

14
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— Direct method without interaction
o Iterative method without interaction
— Direct method with interaction

= Iterative method with interaction
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Figure 4. Vertical deflection and acceleration at the midpoint of the beam.

The sprung mass deflection and acceleration are plotted in Figure 5.
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Figure 5. Vertical deflection and acceleration of the sprung mass.

Figure 6 shows the variation of the contact force between the sprung mass and the simply
supported beam.

58.00

57.50 4

Contact force (kN)

55.50 4

55.00

57.00 1

56.50 4

56.00 1

— Direct method with interaction

= Iterative method with interaction

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (s)

Figure 6. Contact force between the sprung mass and the simply supported beam.

A perfect agreement can be observed between the results obtained with the proposed
formulation and those published in [6] and [7].

15
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5. CONCLUSIONS

In the present work an integrated model whose aim is the dynamic analysis of structures by
the Hilber-Hughes-Taylor method is proposed. This algorithm treats the interaction between
moving vehicles and a structure such as a bridge. This work provides a significant
improvement relatively to the method proposed in [4] and [5], since the compatibility between
vehicle and structure is no longer imposed by an iterative method, but by means of an
integrated formulation that considers as variables displacements and contact forces. The
governing system of equations comprises dynamic equilibrium equations and compatibility
equations. The system of linear equations that arises at each time step is efficiently solved by
Gaussian elimination, by considering several submatrices and their own characteristics. A
significant improvement in terms of efficiency and precision could be observed.
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